

BIOCOMEM

H2020 GRANT AGREEMENT NUMBER: 887075

Start date of project: 01/06/2020 Duration: 3 years

[WP7 - Dissemination and Exploitation]

D7.19 BIOCOMEM long term learning measures (courses and workshops) M24

Topic: BBI2019.SO3.R10: Develop bio-based high-performance materials for various and demanding

applications

Funding scheme: Research and innovation actions

Call identifier: H2020-BBI-JTI-2019

Due date of deliverable:	Actual submission date:	Reference period:
30-11-2022	12-12-2022	31-07-2020-30-11-2022
Document classification code (*):		Prepared by ^(**) :
BIOCOMEM-WP7-D719-DLR-TUE-20221212-v0.1.docx		TUE

Version	DATE	Changes	CHECKED	APPROVED
v0.1	12-12-2022	First Release	TUE	FG

	Project funded by European Union's Horizon 2020 research and innovation programme (2014-2020)		
Dissemination Level			
PU	Public	Х	
PP	Restricted to other programme participants (including the Commission Services)		
RE	Restricted to a group specified by the consortium (including the Commission Services)		
СО	Confidential, only for BioCoMem s of the consortium (including the Commission Services)		
CON	Confidential, only for BioCoMem s of the Consortium		

^(*) for generating such code please refer to the Quality Management Plan, also to be included in the header of the following pages

^(**) indicate the acronym of the partner that prepared the document

D7.3 Dissemination and Communication Plan updated

Proj. Ref.: BIOCOMEM-887075 Doc. Ref.: BIOCOMEM-WP7-D73-DLR-TUE-20201103-v0.1.docx Date: 03/11/2020

Page No: 2 of 5

Content

1. EXECUTIVE SUMMARY	3
1.1. Description of the deliverable content and purpose	3
2. Introduction	
2.1. Brief description of the project objectives	4
Appendices	5

D7.3 Dissemination and Communication Plan updated

Proj. Ref.: BIOCOMEM-887075
Doc. Ref.: BIOCOMEM-WP7-D73DLR-TUE-20201103-v0.1.docx
Date: 03/11/2020

Page No: 3 of 5

1. EXECUTIVE SUMMARY

1.1. Description of the deliverable content and purpose

As part of work package 7 of Biocomem, (Exploitation, Dissemination and Communication) TUE together with all partners would develop and execute workshops, courses and guided visits. In particular the taska foreseen are:

Two public Workshops: One on "Biomembranes for gas permeation" (general audience) at TUE (M24) and the final workshop focused on presenting the project results at the demo plant site (industry audience) (M36)

Webinars on the BIOCOMEM tools: Training sessions on software tools developed in WP2 will be organised remotely, via webinars, for each Demo Site. TUE and DMT will be in charge of the training courses.

Courses for university students: The projects results will be integrated in BSc and MSc courses, in addition the consortium will develop a dedicated elective course to be held locally and distributed online.

Courses for professionals: The consortium will develop three short course modules on i) Advanced industrial catalysis; ii) Membrane separation and iii) Membrane design.

Guided visits to demo sites: Guided visits for stakeholders (engineers, end users, students, etc.) to the demonstration installation will be organised at a local, national and international levels. These visits will be hosted and supported by the demo plant owners.

D7.3 Dissemination and Communication Plan updated

Proj. Ref.: BIOCOMEM-887075 Doc. Ref.: BIOCOMEM-WP7-D73-DLR-TUE-20201103-v0.1.docx Date: 03/11/2020

Page No: 4 of 5

2. Introduction

2.1. Brief description of the project objectives

BIOCOMEM's tasks in the WP7 are as fllows

Two public Workshops: One on "Biomembranes for gas permeation" (general audience) at TUE (M24) and the final workshop focused on presenting the project results at the demo plant site (industry audience) (M36)

Webinars on the BIOCOMEM tools: Training sessions on software tools developed in WP2 will be organised remotely, via webinars, for each Demo Site. TUE and DMT will be in charge of the training courses.

Courses for university students: The projects results will be integrated in BSc and MSc courses, in addition the consortium will develop a dedicated elective course to be held locally and distributed online. Courses for professionals: The consortium will develop three short course modules on i) Advanced industrial catalysis; ii) Membrane separation and iii) Membrane design.

Guided visits to demo sites: Guided visits for stakeholders (engineers, end users, students, etc.) to the demonstration installation will be organised at a local, national and international levels. These visits will be hosted and supported by the demo plant owners.

Due to COVID and to allow larger audience the first workshop has been organized together with several other projects. The workshop, held online has been a great success with attendies participating from all over the world.

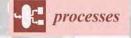
A report of the event is reported in Apeendix 1.

A next workshop will be organized towards the end of the project, again by TUE and possibly with participation of other projects.

As for the training session and courses, the partners have prepared dedicated lectures that will be given at summer school (one organized at TUE on June 2023) as well as via webinars.

Two webinar will be organized in 2023 and given with free participation, the first one for undergraduate students and the second for professionals. Some of these lectures will be integrated in the course process design and in the course separation technologies for TUE students

An example of lecture materials are reported in the Appendix 2.


Finally, the site visits will be organized as soon as the prototypes will be ready.

Appendices
Appendix 1. report on first workshop Appendix 2. lectures for long term learning

INTERNATIONAL WORKSHOP ON CO, CAPTURE AND UTILIZATION TU/E - EINDHOVEN - 16-17 FEBRUARY 2021 ORGANIZED BY C4U CINVERGE TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY CAR MEMBER €COCO₂ Bi@ Co Mem COFOKUS CO2MOS

The projects sponsoring this workshop received support from the European Union's Horizon 2020 research and innovation under grants agreement reported below

N°	Acronym	Project Title	Website	Grant agreement
1	MEMBER	Advanced MEMBranes and membrane assisted procEsses for pre- and post-combustion CO2 captuRe	https://member-co2.com/	760944
2	CARMOF	TAILOR-MADE 3D PRINTED STRUCTURES BASED ON CNTS AND MOFS MATERIALS FOR EFFICIENT CO2 CAPTURE	https://carmof.eu/	760884
3	BIOCOMEM	Bio-based copolymers for membrane end products for gas separations	https://www.biocomem.eu/	887075
4	C2FUEL	Carbon Captured Fuel and Energy Carriers for an Intensified Steel Off-Gases based Electricity Generation in a Smarter Industrial Ecosystem	https://c2fuel-project.eu/	838014
5	COZMOS	Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS	https://www.spire2030.eu/c ozmos	837733
6	eCOCO2	Direct electrocatalytic conversion of CO2 into chemical energy carriers in a co-ionic membrane reactor	https://ecocoo.eu/	838077
7	CO2Fokus	CO2 utilisation focused on market relevant dimethyl ether production, via 3D printed reactor- and solid oxide cell-based technologies	https://www.co2fokus.eu/	838061
8	C4U	Advanced Carbon Capture for steel industries integrated in CCUS Clusters	https://c4u-project.eu/	884418
9	REALISE	Demonstrating a Refinery-Adapted Cluster- Integrated Strategy to Enable Full-Chain CCUS Implementation	https://realiseccus.eu/	884266
10	CONVERGE	CarbON Valorisation in Energy-efficient Green fuels	https://www.converge- h2020.eu/	818135
11	KEROGREEN	Production of Sustainable aircraft grade Kerosene from water and air powered by Renewable Electricity, through the splitting of CO2, syngas formation and Fischer- Tropsch synthesi	http://www.kerogreen.eu/	763909

Carbon-intensive industries are mandatory to supply processed materials and products to cover EU citizen's needs. In a vision of a decarbonized Europe, these industries are always seen as negative components due to their massive CO₂ emissions but also since only 14% of the energy used to run these factories is coming from renewable sources.

What if we were able to generate additional value, capturing CO₂ flue gases & convert it into a fuel and energy carrier that could be used locally?

There is a large consensus at European level that CO₂ capture, either from energy intensive industries or even from air, is a necessity to be able to reduce the human effect on the observed climate changes.

At the same time, CO₂ is increasingly seen as a potential raw material for the C1 chemistry or to be used as energy carrier.

Several projects are running in parallel at national and international levels. This workshop gathered the last scientific results of the different running projects and made them available for scientists and students and industrial researchers in an informal atmosphere.

The scientific goal was to create a forum for open discussion on the latest developments on technologies for CO₂ capture and conversion. We think that the workshop should be open to all, without registration fees, and as such several projects decided to try to (partially) cover the costs of the workshop. In this way, also young students could participate freely and have the possibility to discuss the topic and the last developments in the field.

Chairman

Prof. Fausto Gallucci – Eindhoven University of Technology

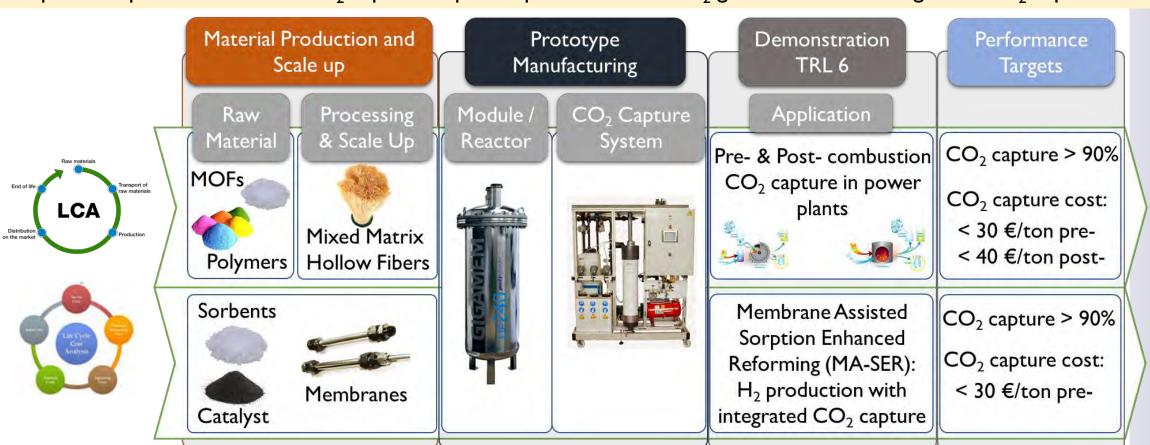
Local organizing Committee

Fausto Gallucci
Fernanda Neira D'Angelo
Aitor Cruellas
Camilla Brencio
Brandon Leal
Sirui Li
Arash Rahimali
Berenger Wegman
Saskia Walravens

Introduction to the Projects

International Workshop on CO₂ Capture and Utilization, 16-17 February 2021, TU/E, Eindhoven, The Netherlands

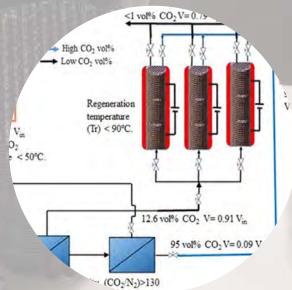
Outline


- I. MEMBER
- 2. CARMOF
- 3. BIOCOMEM
- 4. C2FUEL
- 5. COZMOS
- 6. eCOCO2
- 7. CO2Fokus
- 8. C4U
- 9. REALISE
- 10. CONVERGE
- II. KEROGREEN

Nº	Topic	Acronym	Project Tytle	website	Coordinator or speaker
1	NMBP-20-2017: High-performance materials for optimizing carbon dioxide capture	MEMBER	Advanced MEMBranes and membrane assisted procEsses for pre- and post- combustion CO2 captuRe	https://member-co2.com/	José Luis Viviente
2	NMBP-20-2017: High-performance materials for optimizing carbon dioxide capture	CARMOF	TAILOR-MADE 3D PRINTED STRUCTURES BASED ON CNTS AND MOFS MATERIALS FOR EFFICIENT CO2 CAPTURE	https://carmof.eu/	Adolfo Benedito
3	BBI-2019-SO3-R10 - Develop bio-based high- performance materials for various and demanding applications	BIOCOMEM	Bio-based copolymers for membrane end products for gas separations	https://www.biocomem.eu/	Oana David
4	CE-SC3-NZE-2-2018: Conversion of captured CO2	C2FUEL	Carbon Captured Fuel and Energy Carriers for an Intensified Steel Off-Gases based Electricity Generation in a Smarter Industrial Ecosystem	https://c2fuel-project.eu/	Camel Makhloufi
5	CE-SC3-NZE-2-2018: Conversion of captured CO2	COZMOS	Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS	https://www.spire2030.eu/cozmos	Richard H. Heyn
6	CE-SC3-NZE-2-2018: Conversion of captured CO2	eCOCO2	Direct electrocatalytic conversion of CO2 into chemical energy carriers in a co-ionic membrane reactor	https://ecocoo.eu/	José M. Serra
7	CE-SC3-NZE-2-2018: Conversion of captured CO2		CO2 utilisation focused on market relevant dimethyl ether production, via 3D printed reactor- and solid oxide cell-based technologies	https://www.co2fokus.eu/	Vesna Middelkoop
8	LC-SC3-NZE-5-2019-2020 - Low carbon industrial production using CCUS	C4U	Advanced Carbon Capture for steel industries integrated in CCUS Clusters	https://c4u-project.eu/	Haroun Mahgerefteh
9	LC-SC3-NZE-5-2019-2020 - Low carbon industrial production using CCUS	REALISE	Demonstrating a Refinery-Adapted Cluster-Integrated Strategy to Enable Full-Chain CCUS Implementation	https://realiseccus.eu/	Inna Kim
10	LC-SC3-RES-21-2018 - Development of next generation biofuels and alternative renewable fuel technologies for road transport	CONVERGE	CarbON Valorisation in Energy-efficient Green fuels	https://www.converge-h2020.eu/	Giampaolo Manzolini
11	LCE-06-2017 - New knowledge and technologies	KEROGREE N	Production of Sustainable aircraft grade Kerosene from water and air powered by Renewable Electricity, through the splitting of CO2, syngas formation and Fischer-Tropsch synthesi	http://www.kerogreen.eu/	Michael Tsampas

Advanced MEMBranes and membrane assisted procEsses for pre- and post- combustion CO2 captuRe

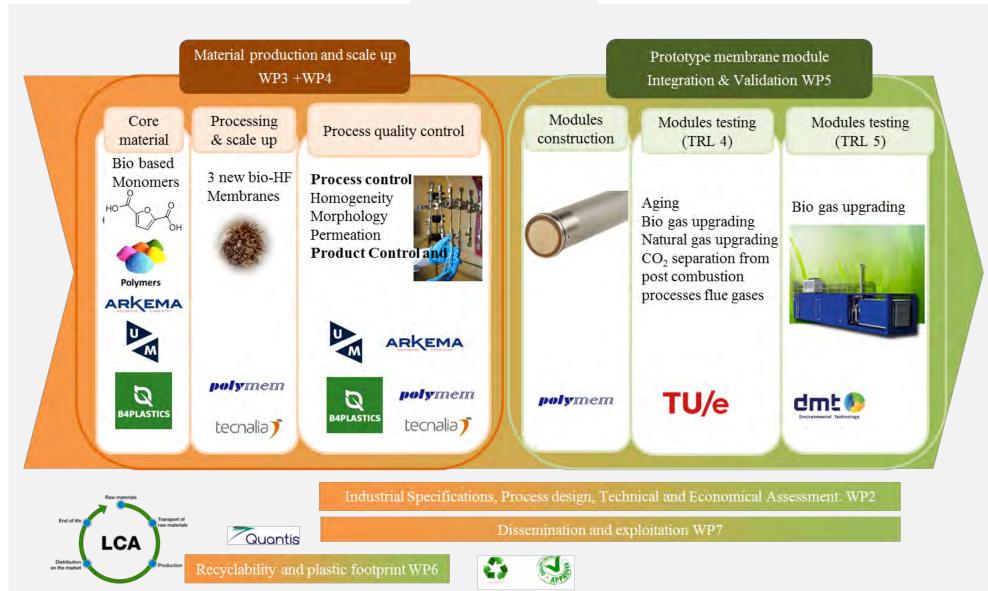
MEMBER project aims to reduce the cost of the Carbon Dioxide capture technologies by scaling-up and manufacturing advance materials (membranes, catalysts and sorbents) to develop membrane-based technologies that outperform current technology for pre- and post-combustion CO_2 capture in power plants as well as H_2 generation with integrated CO_2 capture.


CARMOF Project

TAILOR-MADE 3D PRINTED STRUCTURES BASED ON CNT AND MOF MATERIALS FOR EFFICIENT CO2 CAPTURE

CARMOF is developing a hybrid CO₂ process combining **VTSA** modules based on 3D printed monoliths with thermoelectric regeneration and "in cascade" membranes system. The goal is to achieve high purity CO₂ streams from synergetic effects from both technologies

Bio-based copolymers for membrane end products for gas separations

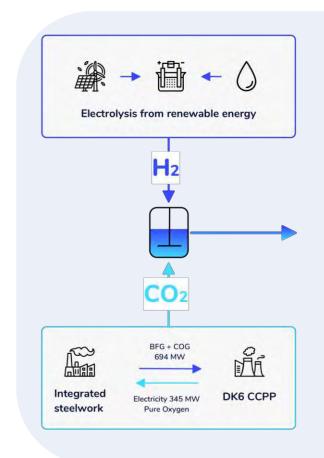


This project has received funding from the Bio Based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme, under grant agreement No 887075.

The JU receives support from the European Union's Horizon 2020 research and innovation program and the Bio Based Industries Consortium

C2FUEL Approach: Aligning local supply and demand

Dr Camel Makhloufi – ENGIE Lab CRIGEN - France


Dunkirk Integrated steel making factory

Large renewable penetration

Dunkirk Harbor

Formic acid as Hydrogen carrier

Decreasing the electricity footprint during boat charging on docks

C2FUEL Output

2.4 million ton of FA 100 000 ton of green hydrogen 1,8 TWh of green electricity Seasonal storage using 3.6 TWh of renewable electricity

Dimethylether as Maritime and truck fuel

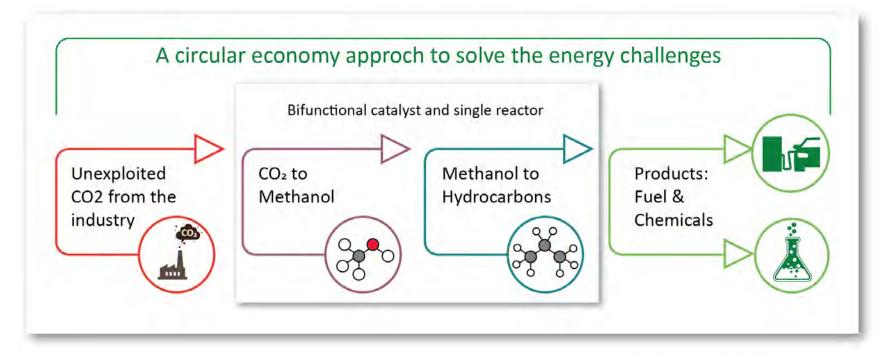
Displacing fossil fuel emission from power plant and decreasing harbor mobility footprint

C2FUEL Output

1.2 million ton of DME

320 000 ton of green H₂ produced using

11 TWh of renewable electricity

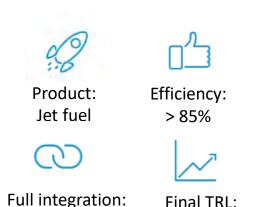


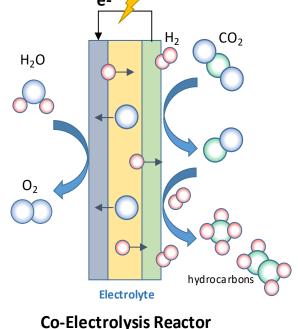
"This project has received funding from VOLKSWAGEN the European Union's Horizon 2020 research and innovation programme under grant agreement No 838014".

COZMOS

Efficient CO₂ conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS

Other partners




Direct electrocatalytic conversion of CO₂ into chemical energy carriers in a co-ionic membrane reactor

AIM: Set-up a technology for direct synthesis of carbon-neutral jet fuels from CO₂ using renewable energy and electrochemical catalytic membrane reactors. Bench-testing targets a 500 W multi-tubular system.

- Single-step electrolysis and one-pot catalytic conversion.
- Operating conditions:
 T = 350-450 °C and > 25 bar.

compact sized reactor

PARTNERS CoorsTek POLITÈÇNICA **HERA Shell**

CO₂ utilisation focused on market relevant dimethyl ether production, via 3D printed reactor and solid oxide cell based technologies Vesna Middelkoop, VITO

1500 N L/h CO₂/H₂ feed, > 30 % CO₂ conversion, 3.5 kW SOE 50 % conversion demo in industrial environment in 2022

under grant agreement n. 838061

Advanced Carbon Capture for Steel Industries Integrated in CCUS Clusters

• C⁴U addresses the essential elements for the optimal integration of CO₂ capture in the iron and steel industry as part of the CCUS chain. This spans demonstration of two highly efficient solid based CO₂ capture technologies for optimal integration into an iron and steel plant and detailed consideration of the safety, environmental, societal, policy and business aspects for successful incorporation into the North Sea Port CCUS industrial cluster.

https://c4u-project.eu/

Testing and demonstration of capture technologies at TRL7

WP1: DISPLACE process for reheating ovens

- . Design, construction and commissioning
- 2. TRL7 N₂-H₂ benchmark demonstration
- TRL7 DISPLACE technology demonstration
- 4. Detailed DISPLACE reactor modelling
- CO₂ purity analysis for pipeline and storage

WP2: CASOH process for blast furnace gas

- Reactor design modelling
- 2. Pilot commissioning
- 3. Screening operating conditions at TRL7
- 1. Long term experimental testing at TRL7
- CO₂ purity analysis for pipeline and storage

Integrating CO₂ capture in industrial installations and clusters

WP3: Integration of CO₂ capture technologies in steel plant

- 1. Detailed CO₂ capture process modelling
- Techno-economic assessment and optimization of steel mill with CO₂ capture
- Industrial design and costing of capture systems

WP4: Integration of CO₂ capture in industrial clusters

- Transport and storage safety impact assessment
- 2. CCUS cluster whole system modelling and operational logistics
- 3. Life Cycle Assessment of the North Sea Port CCS cluster

Societal readiness, public policy and the business case

WP5: Societal readiness and public policy

- 1. System dynamics of socio-economic and political aspects
- 2. Assessment of concerns and needs of societal stakeholders
- Policy instruments assessment for CCUS in industrial clusters

WP6: Long term business models

- 1. Market and stakeholder analysis
- 2. Scenario development, investment and risk analysis
- 3. Customer value proposition development
- 4. Business model descriptions

elementenergy



Climate Strategies

KISUMA

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 884418.

Project Coordinator

Haroun Mahgerefteh University College London h.mahgerefteh@ucl.ac.uk

Project Period
April 2020 - March 2024

Overall budget

€ 13,845,496

Demonstrating a refinery-adapted cluster-integrated strategy to enable full-chain CCUS implementation - REALISE (May 2020 - April 2023)

CO2 capture with 2nd gen. solvents

- Mobile pilot onsite refinery
- Stationary pilot

Solvent management technologies

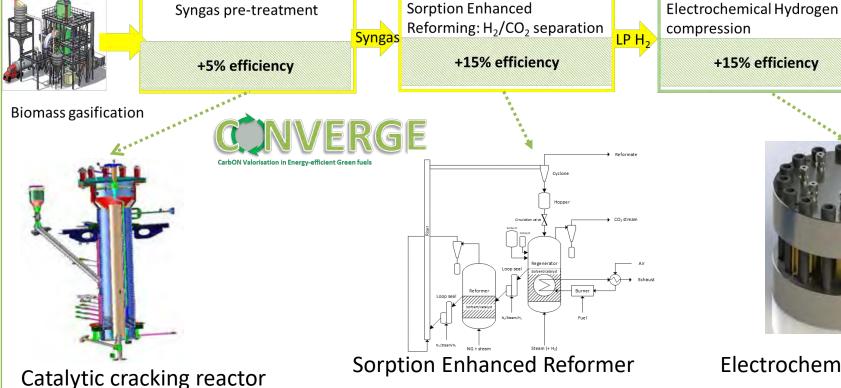
- Avoid solvent loss
- · Emissions control

CO₂ transport, conversion and storage

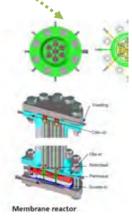
- CO₂ liquefaction
 - CO₂ conversion
 - CO₂ storage

Societal study

- EPE program
- · CCUS readiness



The CONVERGE project will validate an innovative process which will increase the biodiesel production by 12% per secondary biomass unit used and reduce the CAPEX by 10%. The CONVERGE technologies will be validated for more than 2000 cumulated hours taking these from the discovery stage (TRL3) to development stage (TRL5).


In addition, the CONVERGE process will valorise the remaining biogenic and purified CO₂ for production of negative emissions via BECCS. ♠ CO₂ to storage CO_2

Electrochemical Hydrogen compressor

Methanol membrane reactor

The CONVERGE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 818135

+15% efficiency

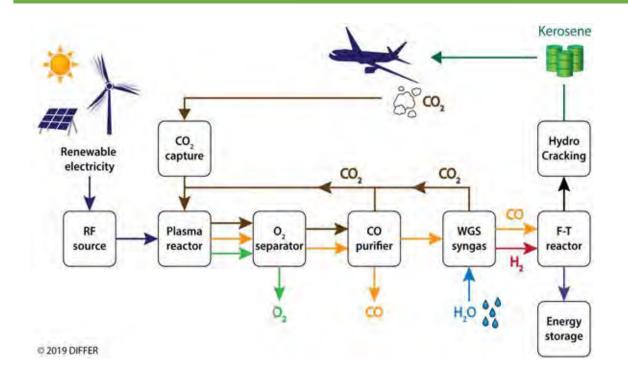
Enhanced Methanol

Membrane synthesis

+10% efficiency

+12% Green

Biodiesel Production



The KEROGREEN CO, plasma route to CO and alternative fuels

M.N. Tsampas, DIFFER, THE NETHERLANDS

Kerogreen aim: Demonstation of the full chain process from renewable, electricity, CO₂ (captured) and H₂O to kerosene.

- Research and optimization of individual process steps TRL (1-3) \rightarrow 4
- Integration phase at Karlsruhe Institute of Technology → 3 L per day
- Duration 2018-2022

Program

Day 1

	Opening & Plenary session	ne (chairnarean Fausta Gallucci)			
9:00-9:30	Opening & Plenary sessions (chairperson Fausto Gallucci) All coordinators - Introduction to projects				
9:30-10:00	Dr. E. De Coninck (CTO ArcelorMittal) - The zero Emission Plant				
10:00-10:30	Dr. Walter Eevers (CO2 Value Europe)				
10:30-11:15		eak and posters			
	Session 1A (chairperson Jose Luis Viviente)	Session 1B (chairperson Camel Makhloufi)			
11:15-11:35	Dr. O. David - A review of the membrane development steps from material to final product	Dr. M. Noponen and Dr. X. Sun - High temperature electrolysis and co-electrolysis			
11:35-11:55	Dr. V. Spallina - System simulation for integration of CO₂ capture technologies into steelworks and CCUS clusters	Prof. J Serra - Direct electrocatalytic conversion of CO₂ into chemical energy carriers in a co-ionic membrane reactor			
11:55-12:15	Dr. M. Saric - Methanol membrane reactor: modelling and experimental results	Dr. V. Middelkoop - CO2Fokus at a glance: CO ₂ utilisation focused on DME production, via 3D printed reactor and solid oxide cell based technologies			
12:15-12:35	Dr. Adam Deacon - Realising the potential of MOFs through efficient scale-up	Dr. M. Tsampas - The KEROGREEN CO ₂ plasma route to CO and alternative fuels			
12:35-12:55	Dr. M. Etxeberria-Benavides - PBI based mixed matrix hollow fiber membranes for pre-combustion CO ₂ capture	Dr. G. Bonura - 3D-printing in catalysis: Development of efficient hybrid systems for the direct hydrogenation of CO ₂ to DME			
12:55-14:00	Lunch break				
	Plenary session (chairperson Fausto Gallucci)				
14:00-15:00	Dr. Angels Orduna (Spire 2030)				
	Session 2A (chairperson Giampaolo Manzolini)	Session 2B (chairperson Vesna Middelkoop)			
15:00-15:20	Dr. G. Garcia - LCA and TEA of the COZMOS technology	Dr. M. Sleczkowski and Dr. Pablo Ortiz - Turning gas separation membranes green with biobased block copolymers			
15:20-15:40	Dr. A. Mattos or Dr. A. Mitchell - How can public policy and business model innovation be developed to address challenges of CCUS and realise the opportunity?	Dr. A. Benedito - CARMOF Project: a CO ₂ capture demonstrator based on membrane and solid sorbents hybrid process			
15:40-16:00	Dr. L. Engelmann - Perception of CO ₂ -based fuels and their production in international comparison	Dr. R.H. Heyn - Introduction to the COZMOS project			
16:00-16:20	Dr. N. Dunphy - Social studies in REALISE project	Dr. L. Petrescu - Converge technology for efficiency methanol production with negative CO ₂ emissions: energy and environmental analysis			
16:20-17:05	Coffee break and posters				

	Opening & Plenary Sessions (chairperson Fernanda Neira D'Angelo)			
9:30-10:00	All coordinators - Introduction to projects			
10:00-11:00	Dr. K. Bakke - Northern Lights – concept, plans and future			
11:00-11:45	Coffee brea	ak and posters		
	Session 3A (chairperson José Serra)	Session 3B (chairperson Oana David)		
11:45-12:05	Dr. A. De Paula Oliveira - SER and SEWGS for CO ₂ capture: experimental results	Msc. A. Sliousaregko - Industrial membrane requirements for CO ₂ removal from different gas mixtures - Current practices and developments		
12:05-12:25	MSc. S. Poto - Membrane reactors for DME production	Dr. I. Kim - Technologies demonstration in REALISE		
12:25-12:45	Dr. U. Olsbye - Catalyst development within the COZMOS project	Dr. N. Kanellopoulos - Hybrid VTSA pilot plant and design of industrial demo plant for CO ₂ capture		
12:45-13:05	Dr. S. Krishnamurthy - CO ₂ capture using 3D printed PEI adsorbents supported by carbon nanostructures	Mr. Paul Cobden and Prof. C. Abanades - Pilot preparation for demonstration in the C4U project		
13:05-13:25	Dr. S. Perez - Process intensification in the conversion of CO ₂ with a milli- structured reactor	Mr. T. Swinkels - Decentralized FA based power generators		
13:25-13:45	Dr. F. de Sales Vidal Vazquez - The KEROGREEN syngas route to alternative fuels and chemicals	Dr. L. Roses - Design and development of a membranebased post-combustion CO ₂ capture system		
13:45-14:30	Lunch break			
14:30-15:30	Round table and questions - closure (chairpersons Fausto Gallucci and Fernanda Neira)			

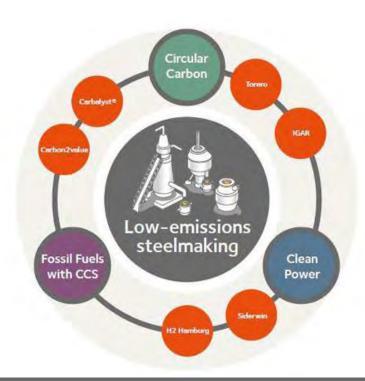
INTERNATIONAL WORKSHOP ON CO, CAPTURE AND UTILIZATION TU/E - EINDHOVEN - 16-17 FEBRUARY 2021

Opening & Plenary sessions (chairperson Fausto Gallucci)

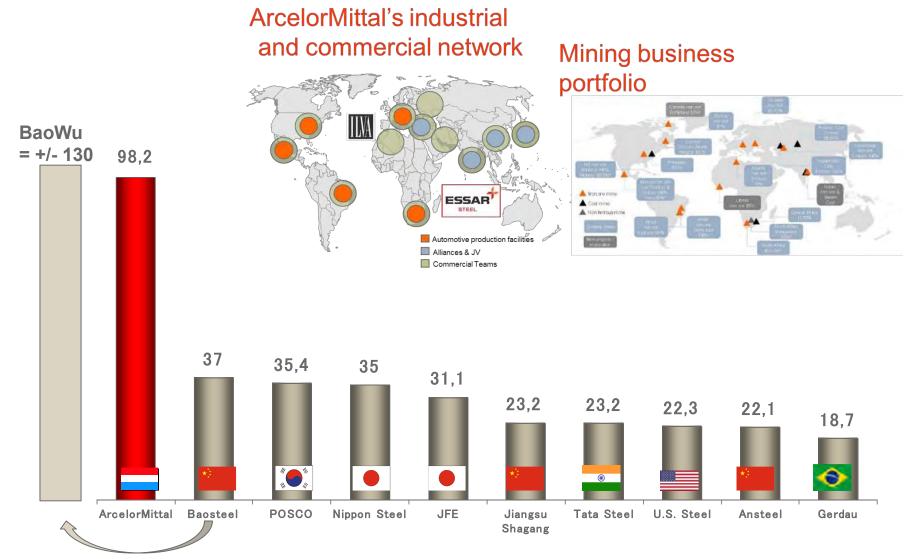
All coordinators - Introduction to projects

Dr. E. De Coninck (CTO ArcelorMittal) - The zero Emission Plant

ORGANIZED BY

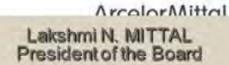


SPONSORED BY



ArcelorMittal: possible pathways towards

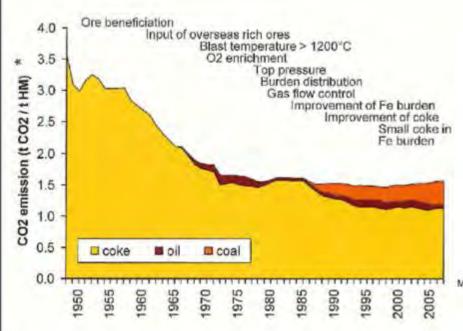
THE LOW EMISSION PLAN(T)

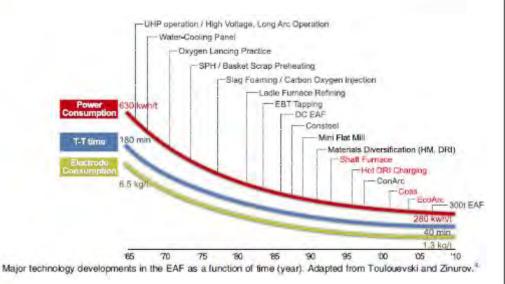

Largest steel producers (in mt crude steel)

Group Management

Aditya MITTAL Chief Executive Officer (CEO)

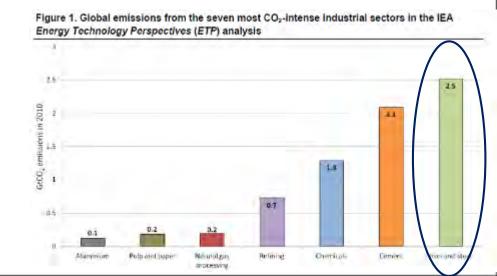
LIS team = low impact steel making


Agenda:


- 1. European history of steelmaking
- 2. Others are still at the very beginning of this history
- 3. What can Europe afford?
- 4. Low emission principles
 - a) Gas separation
 - b) CO re-use by chemical industry
 - c) CO₂-H₂-chemistry: new technologies
 - d) CO₂ sale
 - e) CO₂ storage
- 5. Some political issues

The challenge of the steel industry = C-footprint reduction

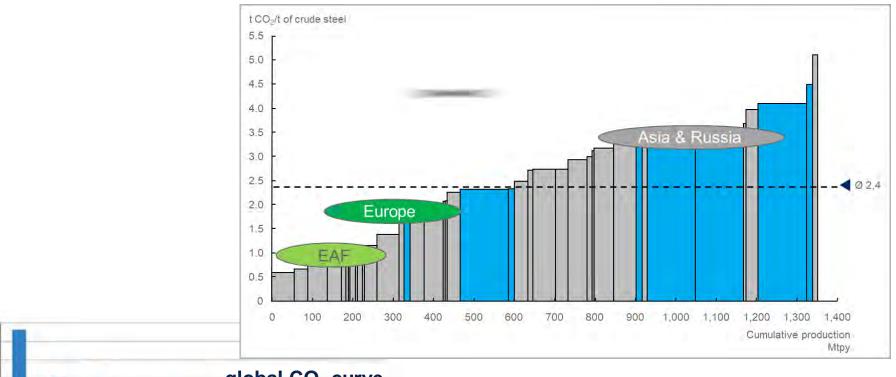
Conventional steel making = blast furnaces (BF) Electrical steel making = electric arc furnaces (EAF)

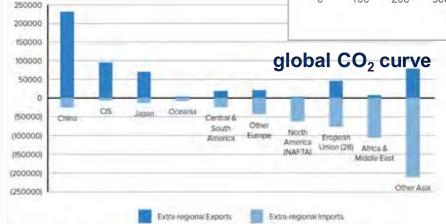


1,8 billion tons of steel in 2018

30% of industrial CO₂-emissions. 6,7% of anthropogenic CO₂-emissions

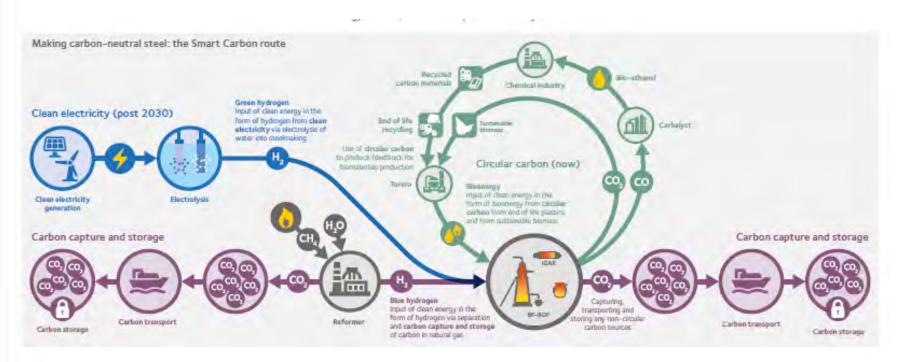
They are amongst the highest of industries....




C-footprint reduction: the main emittors are not located in Europe!!!

China/India

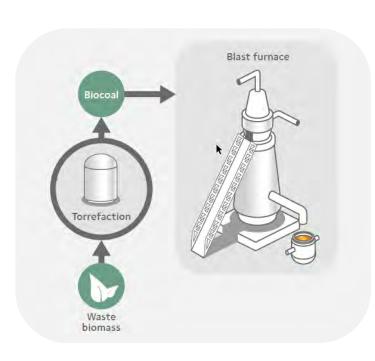
Other



AM decarbonation plan: -30% by 2030, carbon neutrality by 2050

Several measures to be developed:

- Energy efficiency and recovery
- Maximum use of affordable renewables (scrap melting) and C-free hydrogen (DRI)
- Use of biomass
- Use of circular carbon products (e.g. waste plastics)
- Re-use of carbon emissions (CCU)
- Storage of carbon emissions (CCS)



AM decarbonation plan: biogenic carbon: free of CO2 allowances, is available in small volumes, e.g. waste wood....

ArcelorMittal

Circular Carbon – Upgrading waste wood into "Bio-Coal" and plastics into circular carbon

Torero – 30m€ demo project to convert 120.000 ton waste materials into "bio-coal" in ArcelorMittal Gent

Carbon can be re-used:

Scientific Opinion
Novel Carbon Capture and Utilisation Technologies

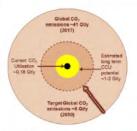


Figure 8 – Global CO₂ emissions and the role of CCU. The figure shows also the target global emissions for 2050 as well as a simplified estimation for the CCU potential including all the possible uses (simplified and adapted". ²³).

CORESYM

CarbOn-monoxide RE-use through industrial SYMbiosis between steel and chemical industries

CORESYM

CarbOn-monoxide RE-use through industrial SYMbiosis between steel and chemical industries

CO-rich waste gases can be converted into products with a reduction of CO₂ emissions and other negative impacts.

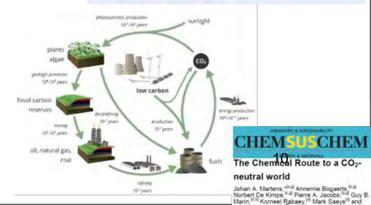
Using waste gases as a feedstock, instead of for energy, can result in emission reductions from the production of energy and products of up to 21-34% compared to the baseline. In addition, the process of cleaning up waste gases for use as a feedstock also results in a concentrated stream of CO., which lends itself to Carbon Capture and Storage (CCS). While roughly a third of the direct emissions from waste gases can be mitigated through use as a feedstock, an additional third is made capture ready in the process. If CCS is implemented alongside waste gas recycling at a European scale, this could result in a reduction of up to 3% of European CO, emissions. In addition to reducing CO, emissions, when substituting waste gases for biobased feedstocks, water demands, wastewater production, and land use reduced, with positive implications for biodiversit

recent Risk Management position paper (DNV, 2011) states that using a variety of carbon utilisation technologies can potentially reduce annual CO₂ emissions by 3.7 Gt. This equates to approximately 10% of current annual CO₂ emissions. A 10% replacement of building materials by CO₂ captured in stable minerals would reduce CO₂ emissions by 1.6 Gt

CCS is the only option to decarbonise many industrial sectors. CCS is currently the only large-scale mitigation option available to cut the emissions intensity of production by over 50% in these sectors.

Take home message

Trading renewable energy by using CO₂ has a potential impact on mitigation of climate changes of over 7


Gtons CO₂ equivalent.

CO ₂ oses	Existing (future) CO ₂ demand (Mt per h)
Enhanced oil recovery	39-309 (<309)
Ores	5-30 (<30)
Food and beverage	~ 17 (35)
Water treatment	1-5(<5)
Other	1-2(<6)
Enhanced coal bed	
Mechanic recovery	[10-300]
CO ₃ concrete curing (MC)	(10-300)
Algae cultivation	(>300)
Mineralisation (MC)	(>300)
Red mud stabilisation (MC)	(5-30)
Baking soda (MC)	<1
Liquid firets (mothanol, formic acid)	(>600)

nova Institute for Ecology and Innovation

Hitchhiker's Guide to Carbon Capture and Utilisation

A more circular economy can cut emissions from the harder-to-abate sectors in industry by 40% by 2050

Global emissions reductively potential from a more circular economy

(CCC) are year

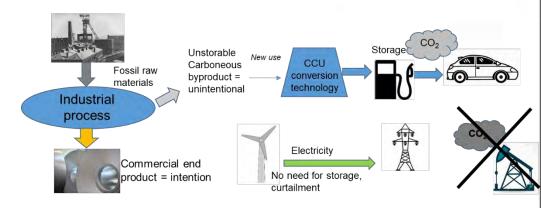
(12)

(2)

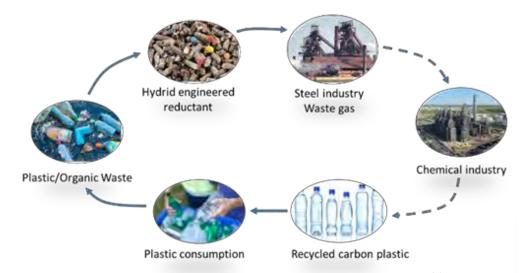
(Carrier) practice: Marterials sepulation. Product alreadation countries

(Countries) practice. (Countries) product alreadation countries.

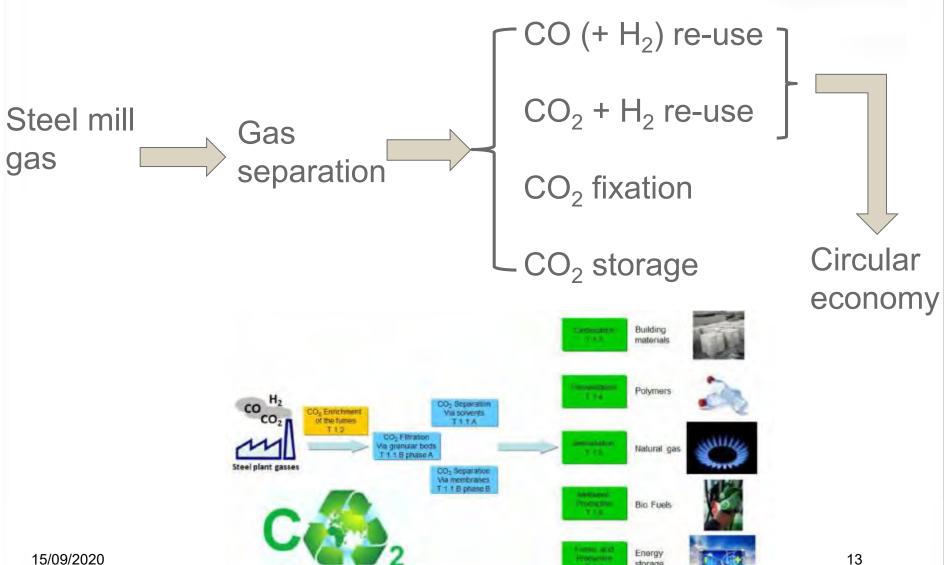
The Low Emission Plant principles


<u>Technical principles</u>:

ArcelorMittal


•Half of the steel mill gases is CO, which is burnt for power production. By not burning the CO a lot of CO₂ is avoided.

This CO can be used for fuel and chemical production.


- •The lack of electricity on the grid, can be compensated by the production of RENEWABLE electricity. This is the major lever to reduce the CO₂ emissions
- •By separating the CO from the CO₂, pure CO₂ is available for re-use or storage.

Only the re-use of C can ignite a CIRCULAR economy

The different steps of the Zero Emission Plan(t) concept of ArcelorMittal **ArcelorMittal**

The steel mill of the future will still produce gasses

Coke Oven gas

Basic Oxygen Furnace gas

Peak name

Benzene

Toluene

Ethylbenzene

p-Xylene

m-Xylene

o-Xylene

DCPCD

Styrene

Ethylacetylene

Vinylacetylene

Hydrogensulfide

Corbonylsulfide

Methylmercaptan

Carbondisulfide

Thiophene

Ethane

Ethylene

Propane

Propylene

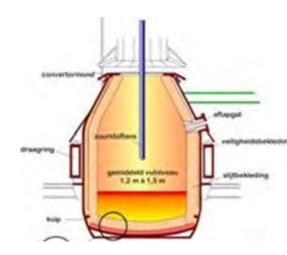
iso-Butane

n-Butane

Acetylene

trans Butene-2

1-Butene


iso-Butene

cis Butene-2 + Neopentane*

n-Pentane

Butadiene 1-3

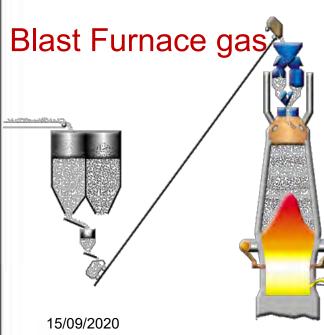
Methyl Acetylene

CO source

 CO_2 , CO and N_2 source

H₂ and CH₄

source

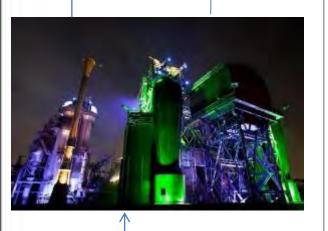

BF Gas: 62 %

BOF Gas: 10%

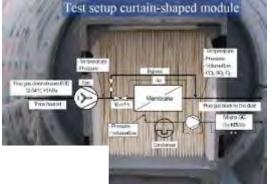
CO Gas: 28%

52% of the gas energy replaces natural gas in the plant

Power plant: 48%


The steel mill of the future will provide the single gas components

gases CO/CO₂/H₂/N₂

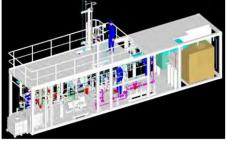


AM Saldanha Works VPSA

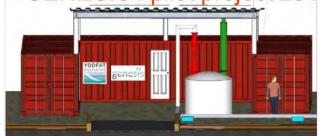
MEMBRANE

The steel mill of the future will provide the single gas components

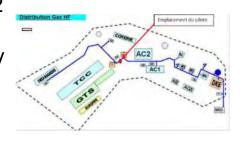
3D : pilot project 2019 – 2023 (Dunkirk) pré-FEED done by IFPEN

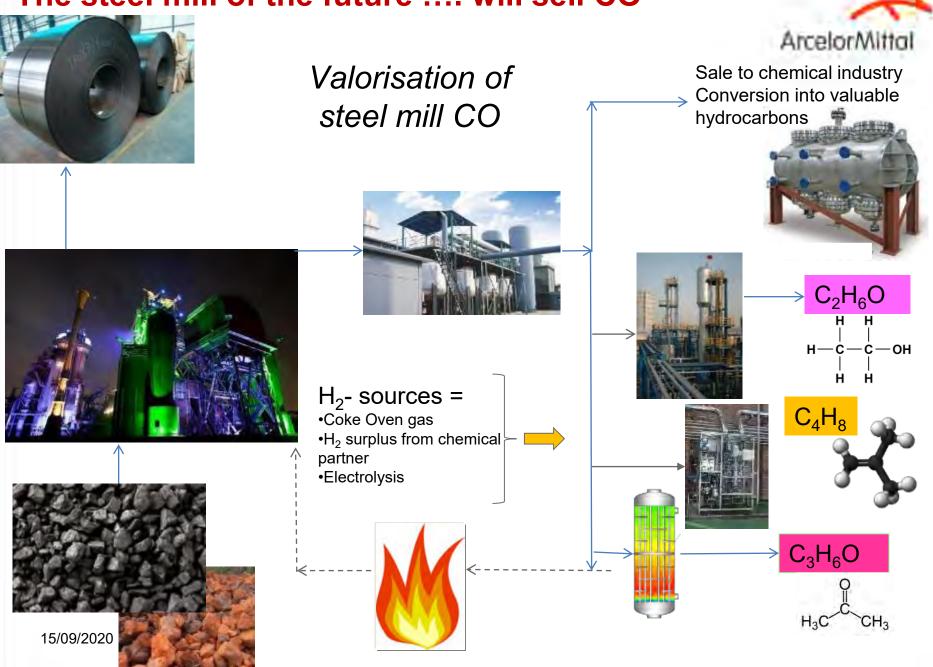


IFPEN mini-pilot in Solaize

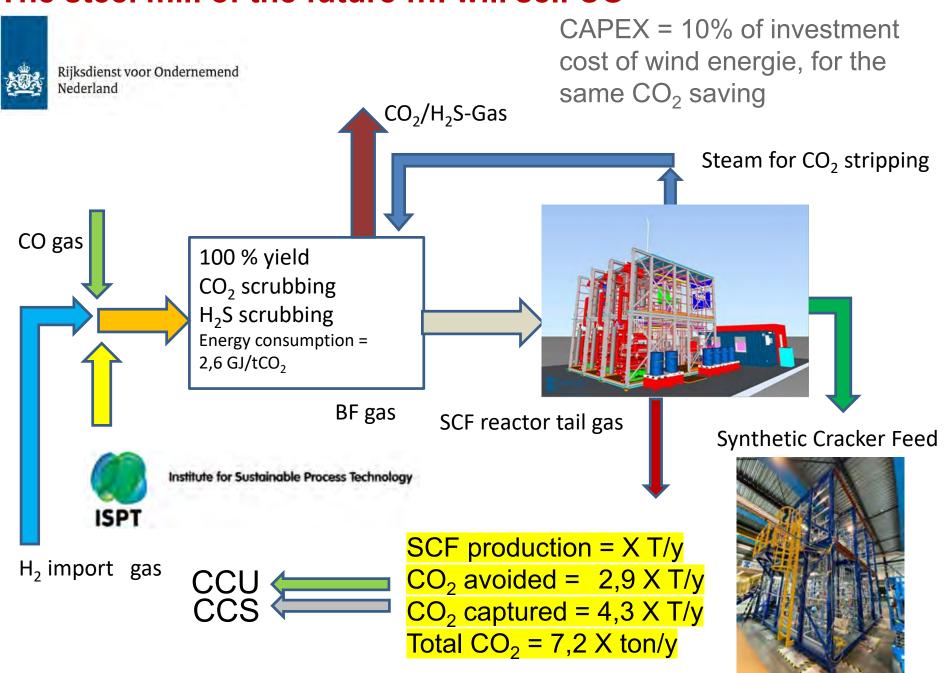

Carbon2Value : pilot project 2018 – 2020

INTERREG sponsored project

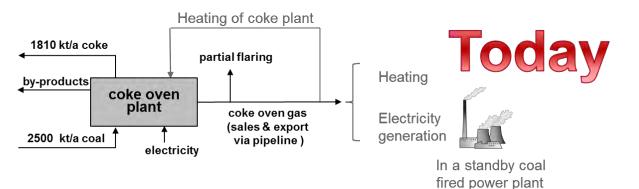

GENESIS: pilot project 2019 – 2021



Capture of 0,5 t/h CO2 from 1.100 Nm³/h BF-gas to study feasability


The steel mill of the future will sell CO

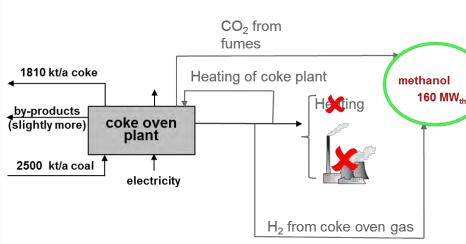
The steel mill of the future will sell CO



The steel mill of the future will sell CO

The steel mill of the future will sell CO₂ - derivates ArcelorMittal Valorisation of Fuels - chemicals steel mill CO2 $C_4H_8O_2$ $CH_3COOH + C_2H_6O$ Raw CO₂ H₃COCH₃ H₃COH H_2 - sources = Coke Oven gas •H₂ surplus from chemical partner Electrolysis C_3H_6O H₃C 15/09/2020 H,N

The steel mill of the future will sell CO₂ - derivates



onfidential

https://www.carbonrecycling.is/

Arcelor Mitta

MeOH production = X T/y

 CO_2 avoided = 1,3 X T/y \square CO_2 captured = (1,3 X T/y \square

+ additional PP closure

Total $CO_2 = 7 \times ton/y$

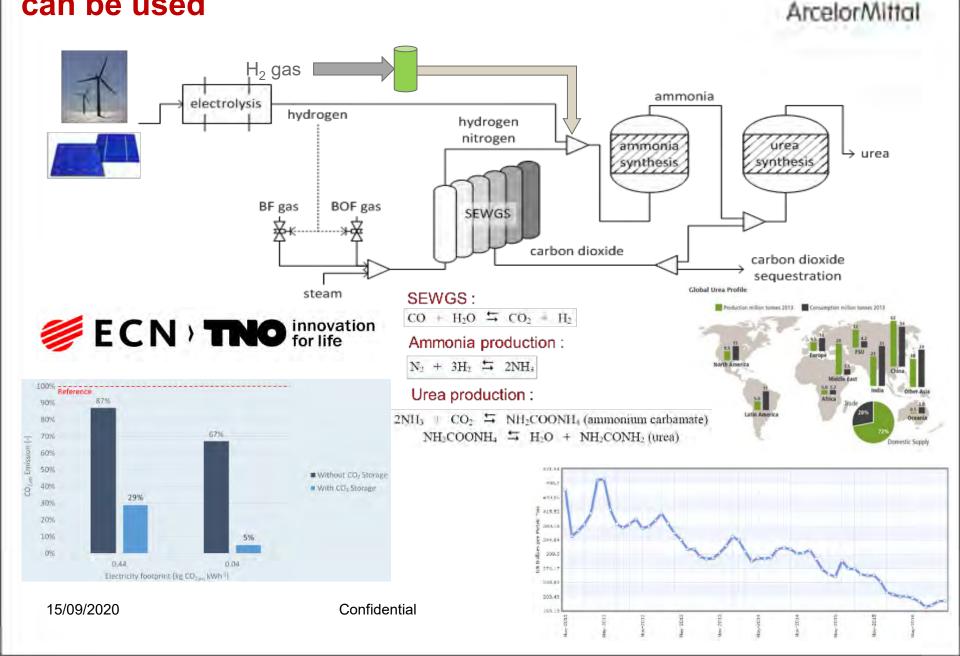
Total $CO_2 = 1,3-2,6 \text{ X ton/y}$

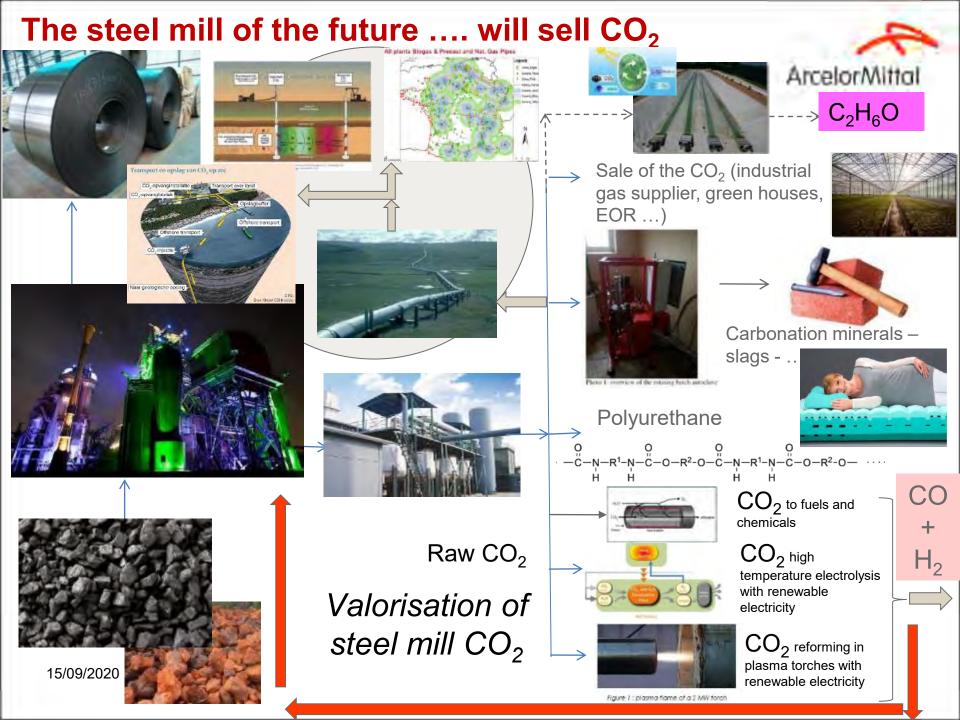
news/co2-to-methanol-plantchina recycled carbon

Shuncheng Steel China

In Future

transport fuel



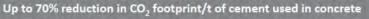

Description of the property of the property of appears of the property of the

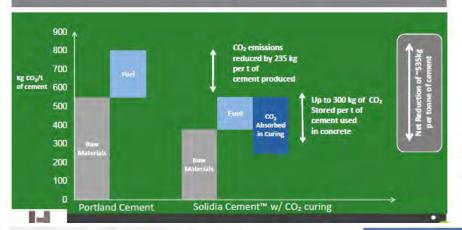
This was the following plant, which will be both in Impaging Anton process in Owar and recent times (ISSO ments) and (ISS) part part, with other security past 12 process (ISSO for all notices) and (ISS) which are the security plant in process (ISSO for all notices) and (ISSO ments) are also ments and (ISSO ments) and (ISSO ments) and (ISSO ments) are also ments and (ISSO ments) and (ISSO ments) are also ments and (ISSO ments) and (ISSO ments) are also ments are also ments and (ISSO ments) and (ISSO ments) are also ments are also ments and (ISSO ments) and (ISSO ments) are also ments are also ments and (ISSO ments) and (ISSO ments) are also ments are a

The steel mill of the future will sell CO₂ - derivates ArcelorMittal RODENHUIZE - DEMONSTRATIEPROJECT CCU Methanol formaldehyde Formic Acid Transport Biodiesel Methylamines 2027 Methylamines **RODENHUIZE GREEN INDUSTRY PARK** 55 MW Methano 2023 Off-shore wind Biodiesel E-fuel MeOH Renewable energy HYDROLYSIS On-shore wind H,0 15/09/2020 Confidential

In integrated steel mills .. a combination of gases can be used

The steel mill of the future will sell CO₂



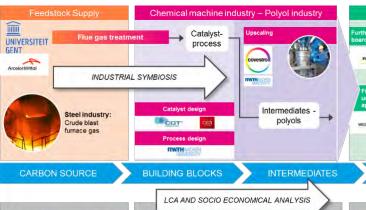


PCC production

Industrial symbiosis analysis

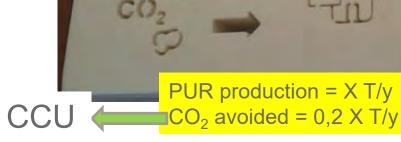
Carbon4PUR

LCA and economic analysis


Economic evaluation

Western Harbour

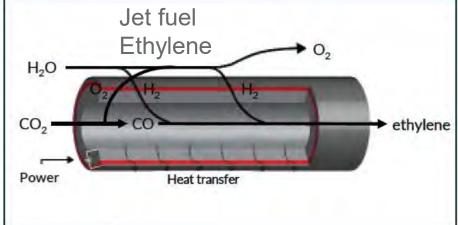
Societal impacts



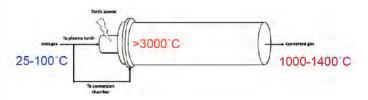
Extended LCA

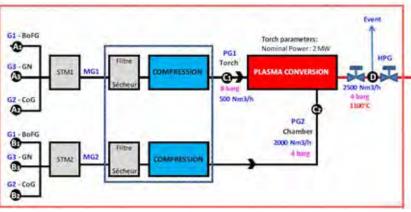
Exploitation - Replication

DECHEMA Imperial College



THE PERSON AND REAL PROPERTY.


Carbon4PUR



IGAR project at AMAL Dunkirk

 $CO_2 + CH_4 -> 2 CO + 2 H_2$

EUROPLASMA

Vosco 2

Algae project at AM Fos sur Mer

15/09/2020

Photo 3 : Bassin 10 m2 de culture de micro algues marines avec fumées industrielles site Arcelormittal

H₂ based steelmaking project at AM Hamburg

Notes: CAPEX, electrolyser USD pookWig. SMR w CCS USD a \$6xWH, full load hours of frydrogen from natural gas 8 you by efficiencies (J.HV), electrolyser polis, gas with CCS 69%, capture rate for gas with CCS of golfs, discount rate. 8%, Source: IEA (2029s), The Future of Hydrogen: Sessing Today's Opportunities.

Depending on local gas prices, electricity at USD 10/MWh to USD 40/MWh and at full load hours of around 4 ooo h is needed for water electrolysis to become cost competitive with natural gas with CCUS. Strom

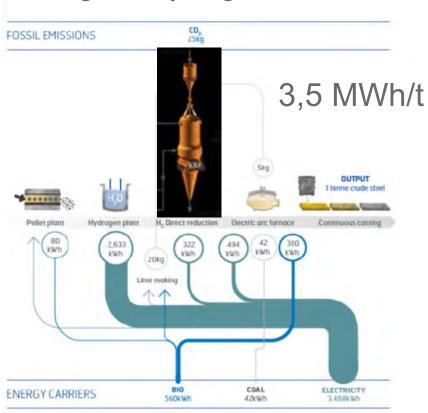
Windpark
(oder PV, ...)

CO₂-freier
Stahl

Stahlwerk

Re29tionsanlage

Vision für CO₂-freie Stahlerzeugung


Metallisierung ~95 % ~700 °C

15/09/2020 Confidential

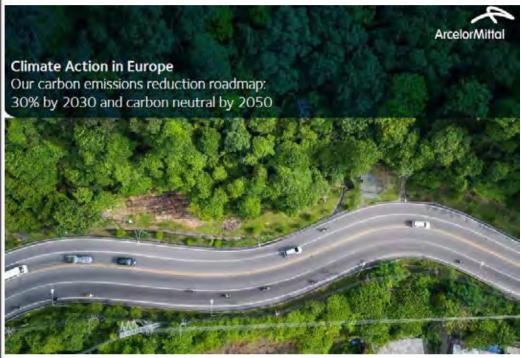
AM is looking to the use of renewable electricity in different ways :

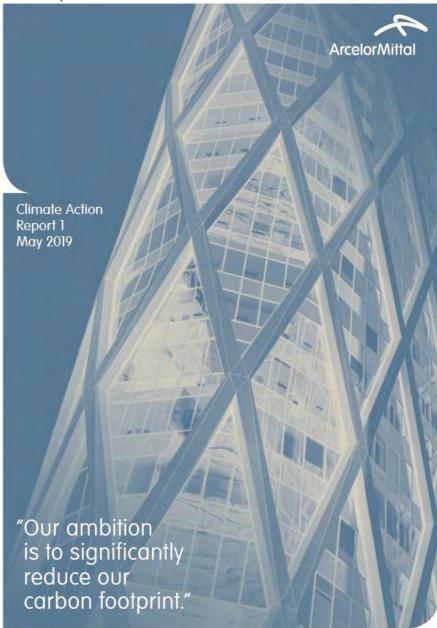
Use of green hydrogen in DRI making:

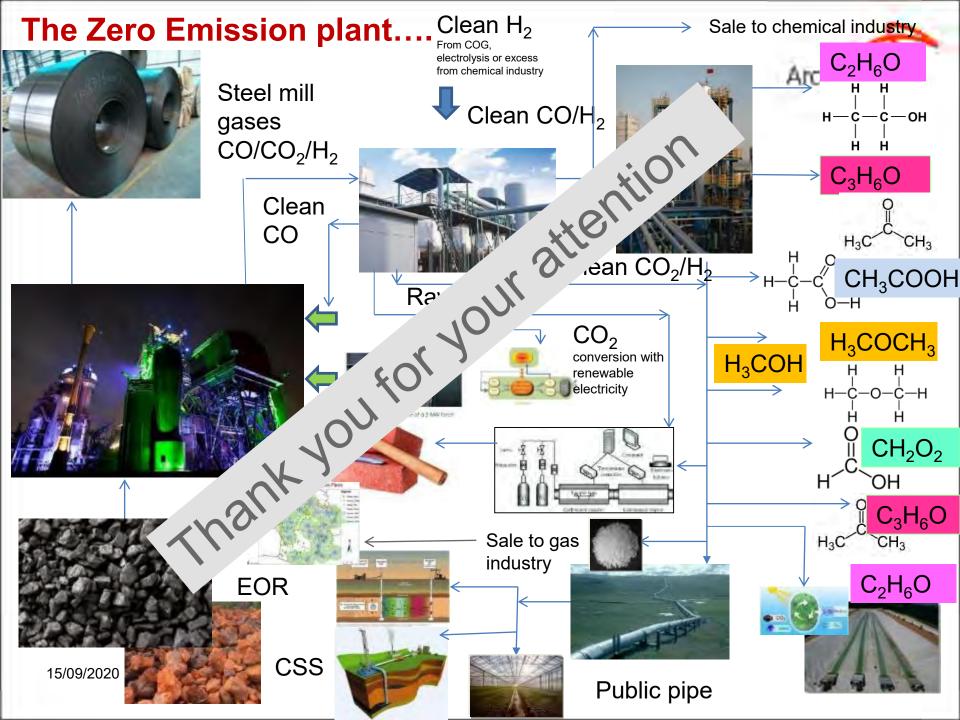
Direct electrolysis of Fe:

The steel mill of the future may have a legal problem ... and no market for its products

RED 2: 2020 - 2030 Recycled Carbon Fuels


Many of these products will cost more than the fossil products


- The LCA-methodology has to be defined and accepted in a delegated act. The minimum threshold of GHG reduction is not yet fixed (renewable electricity is privileged for transport = EV)
- 2. Member states can decide themselves if they allow Recycled Carbon Fuels in the energy mix for transport The promotion of recycled carbon fuels can also contribute towards the policy objectives
- 3. The CO₂ taxes for re-used carbon may not be eliminated (ETS)


of energy diversification and transport decarbonisation when they fulfil the appropriate minimum greenhouse gas savings threshold. It is therefore appropriate to include those fuels in the obligation on fuel suppliers, whilst giving Member States the option not to consider these fuels in the obligation if they do not wish to do so. Since those fuels are of non-renewable nature, they should not be counted towards the overall EU-target for energy from renewable sources.

greenhouse gas emission savings from renewable liquid and gaseous transport fuels of non-biological origin and recycled carbon fuels, which shall ensure that no credit for avoided emissions be given for carbon dioxide whose capture already received an emission credit under other legal provisions. https://www.worldsteel.org/media-centre/industry-member-news/2019-member-news/ArcelorMittal-publishes-first-Climate-Action-report.html

INTERNATIONAL WORKSHOP ON CO, CAPTURE AND UTILIZATION TU/E - EINDHOVEN - 16-17 FEBRUARY 2021

Session 1A (chairperson Josè Luis Viviente)

- 11:15-11:35 Dr. O. David A review of the membrane development steps from material to final product
- 11:35-11:55 Dr. V. Spallina System simulation for integration of CO₂ capture technologies into steelworks and CCUS clusters
- 11:55-12:15 Dr. M. Saric Methanol membrane reactor: modelling and experimental results
- 12:15-12:35 Dr. Adam Deacon Realising the potential of MOFs through efficient scale-up
- 12:35-12:55 Dr. M. Etxeberria-Benavides PBI based mixed matrix hollow fiber membranes for pre-combustion CO₃ capture

ORGANIZED BY

SPONSORED BY

INTERNATIONAL WORKSHOP ON CO2 CAPTURE AND UTILIZATION TUle - Eindhoven - 16-17 February 2021

Membrane development steps: from material to final product

Dr Oana David

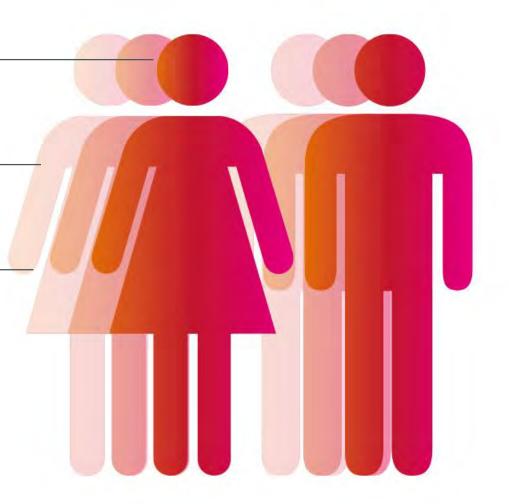
FUNDACION TECNALIA RESEARCH & INNOVATION is a private non profit research centre.

PEOPLEIN TECNALIA

1,445 STAFF

57 %

43 % WOMEN

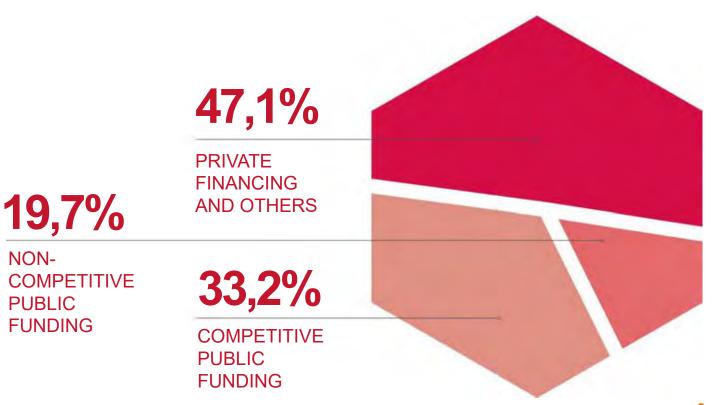

27

DIFFERENT NATIONALITIES

43 AVERAGE AGE

249 NUMBER OF PHDs

Figures on 31 December 2017.

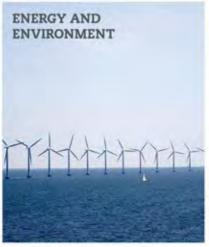


BALANCE OF ACTIVITIES AND FUNDING

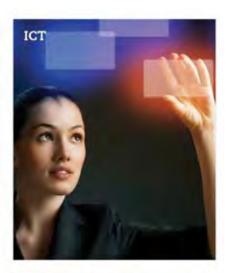
FIGURES ON 31 DECEMBER 2017

104 MILLION EUROS



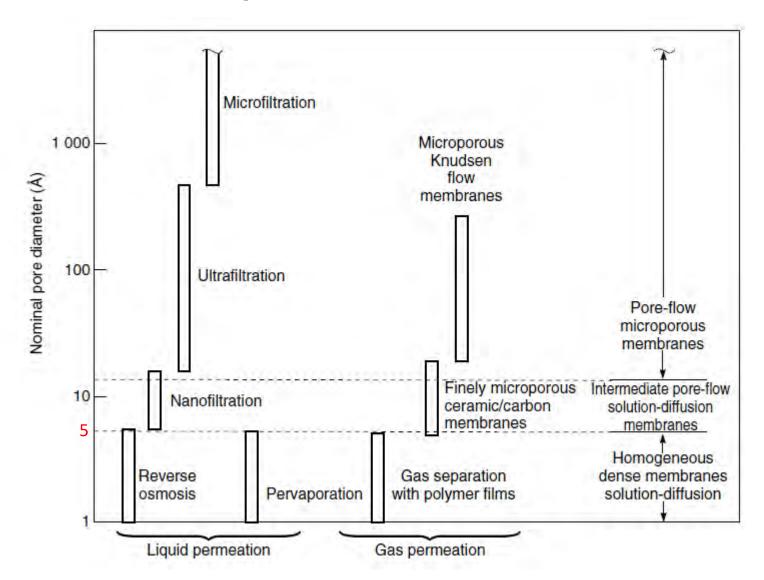

FUNDACION TECNALIA RESEARCH & INNOVATION

is a private non profit research centre.


6 INTERCONNECTED BUSINESS DIVISIONS

Membrane Technology and Process Intensification research group at TECNALIA

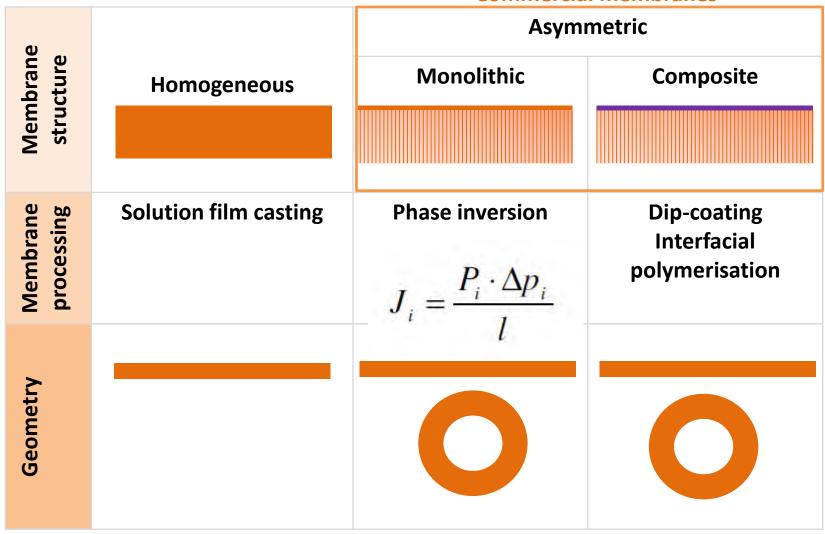
Polymeric and Mixed matrix Carbon molecular sieve **Palladium membranes** membranes Combination of polymer matrix with Pyrolized polymers. Unique pore Thin Pd supported membranes. inorganic fillers: MOFs, zeolites,... structure High H2 permeability & selectivity **Applications Applications Applications** ■ CO₂ Pre-combustion (H₂/CO₂) CO₂ Pre-combustion (H₂/CO₂) ■ CO₂ Pre-combustion (H₂/CO₂) & pure ■ CO₂ Post-combustion (N₂/CO₂) H₂ production Biogas upgrading (CO₂/CH₄) Biogas upgrading (CO₂/CH₄) Natural gas upgrading (CO₂/CH₄)


Membrane development steps: from material to final product

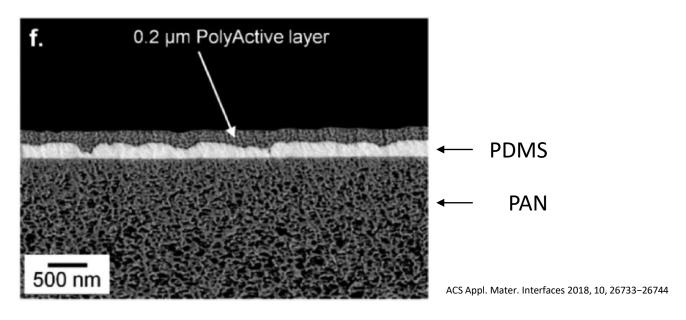
Outlook:

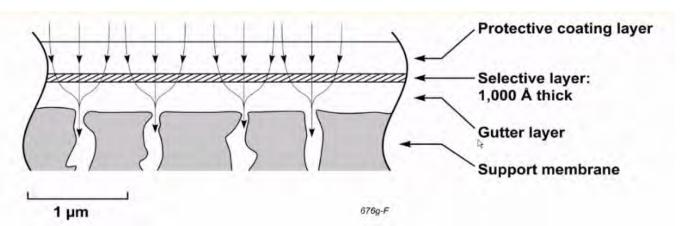
- ✓ Introduction to membrane processes
- ✓ Membrane structure and geometry for gas separation
- ✓ Membrane Development Strategy
- ✓ Applications and Tecnalia examples

Separation with membranes

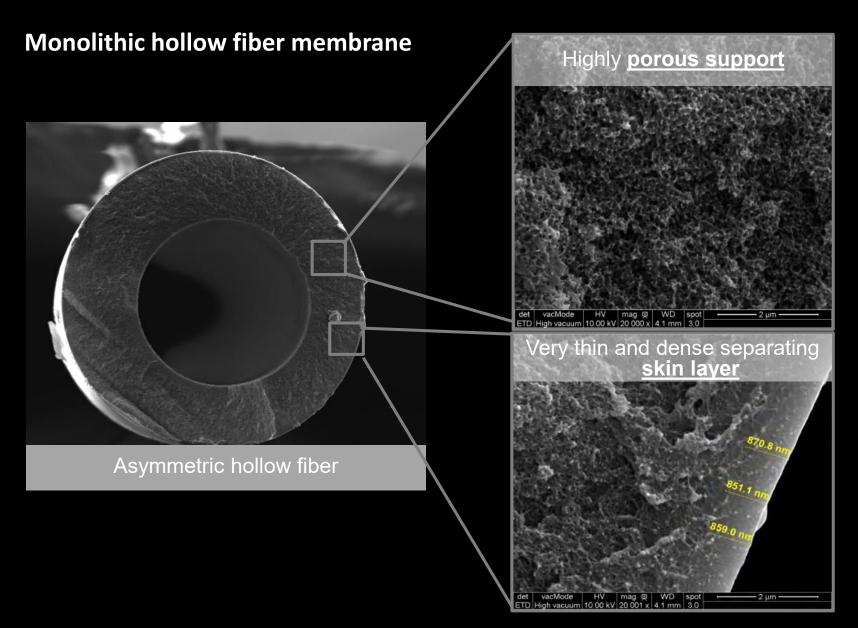


MEMBRANE STRUCTURE AND GEOMETRY

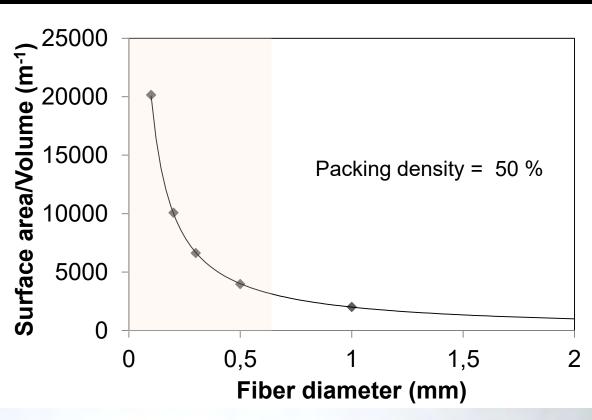

Commercial membranes



MEMBRANE STRUCTURE AND GEOMETRY

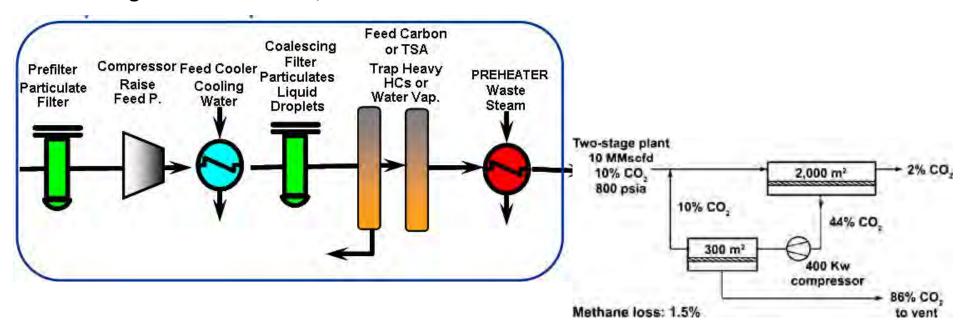

TFM: Thin film composite membrane

MEMBRANE STRUCTURE AND GEOMETRY



PRODUCTIVITY -

MEMBRANE GEOMETRY



Process design and membrane system components

Natural gas treatment: CH4/CO2

Membrane Development Strategy

Process analysys and optimization

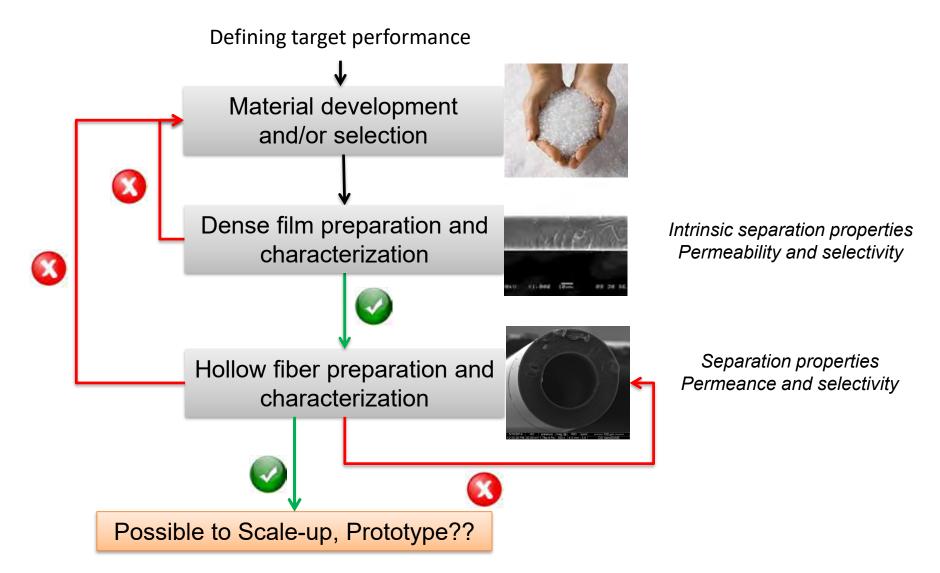
Membrane development

Membrane scale up and prototype construction

Membrane characterization

Analysis of the process (feed stream and desired performance) to propose the best performing possibilities.

Development/tuning up advanced membranes based on novel materials (Mixed Matrix, CMS or metallic membranes) to enhance the performance of the separation.


Production and integration into a prototype of different types of membranes.

Testing commercially available or internally developed membranes at different conditions that reproduce industrial requirements

Membrane Development Strategy

Industrial requirements

- 4-20% CO₂ ingas from power generator
 - Low/Atmospheric pressure
 - Vapour, O₂, SO_x, NO_x, NH₃, ...
 - High flows 40,000 Nm³/h
- To be competitive with amine or 90% CO₂ capture for installed prices not less than 50 €/m²

Specifications	Value	Unit
P _{co2}	>2,250	GPU
CO ₂ /N ₂ selectivity	>30	
Temperature	100	ōС
Design pressure	7	bar
Costs	< 100*	€/m²

^{*}Target set by the BioCoMem project

Haibo Zhai (2019)

Polymer	P _{CO2} (Barrer)	Selectivity CO ₂ /N ₂	Selectivity CO ₂ /CH ₄	Test conditions	Ref.
PEBAX 1657 (60PEO/PA6)	79	52,7	16,8	30 °C	1
PEBAX 1074 (55PEO/PA12)	110,67	51,4	11,09	25 °C	2
PEBAX 2533 (80PTMEO/PA12)	149	15	7,28	25 °C	3
Polyactive	202	44	15,2	35 °C	4
PE (Alathon 14)	12,6	13	-	-	5
6FDA-DAM	842,41	15,3	18	$T = 35^{\circ}C/p = 100PSI$	6
PPO	75,8	19,9	6,89	T ^a : 30°C	7
Matrimid	7	25	33,33	T ^a : 35°C p: 3,5 bar	8
Cellulose Acetate	6,3	30	30	T ^a : 30°C p: nd	7
Polysulfone	5,6	22,4	22,4	T ^a : 30°C p: nd	7
Polietersulfone (Radel A)	2,51	30,61	29,9	Ta: 35°C p: 10 atm	9
Polyeterimide (Ultem)	1,32	28,09	37,71	T ^a : 30°C p: nd	7
P84	0,99	40,20	>40	T ^a : 25°C	10

^{1.} JMS 467(2014)269–278

10. JMS 216 (2003) 195-205

^{2.} Chemical Engineering Research and Design 117 (2017) 177-189

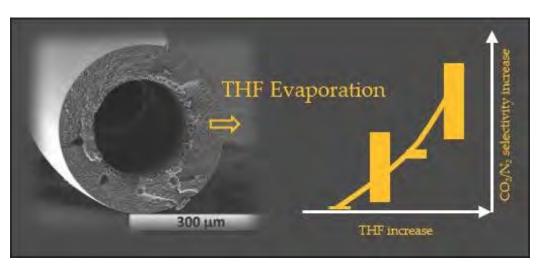
^{3.} Silicon 10, 1461–1467 (2018)

^{4.} JMS 535 (2017) 350-356

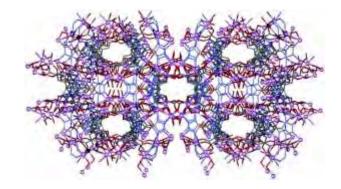
^{5.} Bixler, H. J.; Sweeting, O. J. In Science and Technology of Polymer Films; Sweeting, O. J., Ed.; Wiley-Interscience: New York, 1971; pp 1–130.

^{6.} Polymer 54 (2013) 6226-6235

^{7.} Abetz, V., et all Adv. Eng. Mater., 8 (2006) 328-358.


^{8.} Polymer 49 (2008) 1594

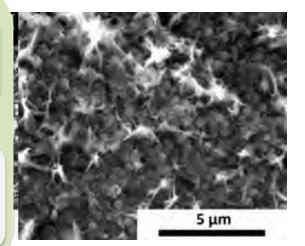
^{9.} JMS 277 (2006) 28-37


P84 Asymmetric hollow fiber membranes

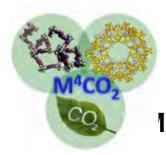
- ➤ highly thin (~56 nm) defectfree skin
- CO₂/N₂ selectivity of 40, and a CO₂ permeance of 23 GPU at 35 °C
- No post treatment necessary for post treatment
- Scaled up the process at 5000 m fiber with reproducible results

MMM flat sheet ZIF-94 Filler and 6FDA-DAM Polymer

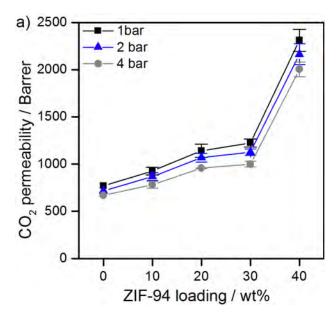
Mixed Matrix Membranes

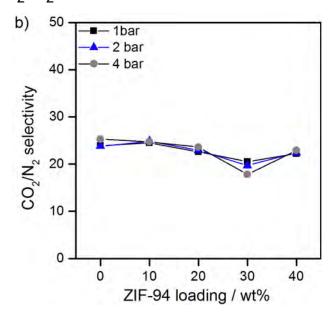

Filler (Molecular sieve)

Matrix (Polymer)



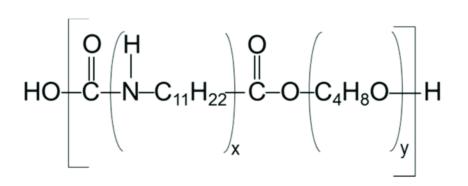
- Mechanical stability
- Easy processing
- Chemical stability
- Gas sieving properties


Miren Etxeberria-Benavides, Oana David, Timothy Johnson, Magdalena M. Łozińska, Angelica Orsi, Paul A. Wright, Stefan Mastel, Rainer Hillenbrand, Freek Kapteijn, Jorge Gascon, High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer, Journal of Membrane Science, Volume 550, 2018, Pages 198-207



IMM flat sheet ZIF-94 Filler and 6FDA-DAM Polymer

Mixed Gas $CO_2/N_2 = 15/85$





Bio based PEBAX co-polymers

Polymer	P _{co2} (Barrer)	Selectivity CO ₂ /N ₂	Selectivity CO ₂ /CH ₄	Test conditions	Ref.
PEBAX 1657 (60PEO/PA6)	79	52,7	16,8	30 °C	1
PEBAX 1074 (55PEO/PA12)	111	51,4	11,09	25 °C	2
PEBAX 2533 (80PTMEO/PA12)	149	15	7,28	25 °C	3
Polyactive	202	44	15,2	35 °C	4
Bio-PEBA	320	46,6	14,2	35 °C	Biocomem

www.biocomem.eu

Thank you for your attention Questions

Visit our blog: http://blogs.tecnalia.com/inspiring-blog/

www.tecnalia.com

System simulation for integration of CO₂ capture technologies into steelworks and CCUS clusters

<u>Vincenzo Spallina¹</u>, Sergey Martynov², Richard Porter², Haroun Mahgerefteh²

¹Department of Chemical Engineering and Analytical Science, University of Manchester

²Department of Chemical Engineering, University College London

email: vincenzo.spallina@manchester.ac.uk

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884418

The contents of this presentation are the responsibility of University of Manchester University & University College London and do not necessarily reflect the opinion of the European Union.

Advanced Carbon Capture for Steel Industries Integrated in CCUS Clusters

Start date: 1 April 2020

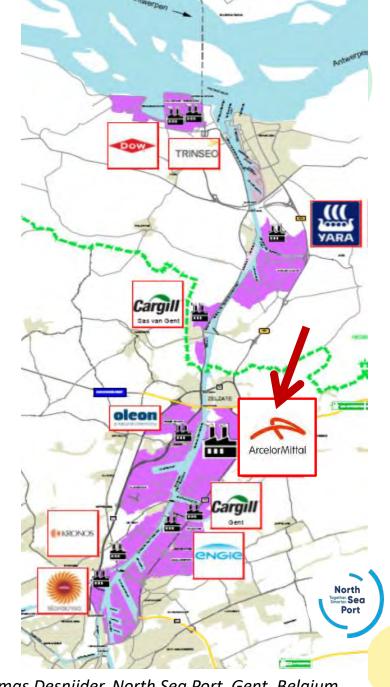
End date: 31 March 2024

Overall budget: € 13,845,496

Coordinator: Prof. Haroun Mahgerefteh, University College London

Radboud University

elementenergy



C⁴U: Headline Objectives

- Elevate two promising CO₂ solid based capture technologies from TRL5 to TRL7 & design for optimal integration in the steel industry
- Analyse the economic, environmental and business impacts of large scale process as part of the North Sea Port industrial cluster including CO₂ quality for the pipeline transportation & storage infrastructure
- Develop and test approaches with stakeholders and end-users to assess and advance societal readiness for CCUS in industrial clusters

C⁴U PERT Diagram

Testing and demonstration of capture technologies at TRL7

WP1: DISPLACE process for reheating ovens

WP2: CASOH process for blast furnace gas

Impacts

Successful demonstration of CO₂ capture from industrial sources

Integrating CO₂ capture in industrial installations and clusters

WP3: Integration of CO₂ capture technologies in steel plant

WP4: Integration of CO₂ capture in industrial clusters

Economic and safe demonstration of integrated CCUS value chain

Societal readiness, public policy and the business case

WP5: Societal readiness and public policy

WP6: Long term business models

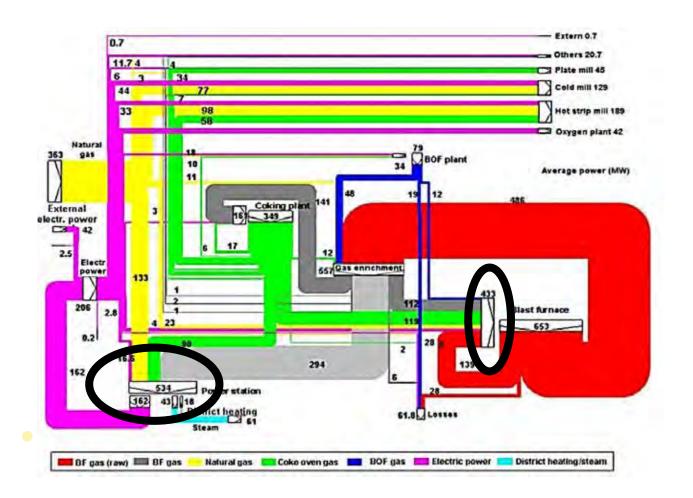
Viable pathways to rollout CCUS in areas with high concentrations of CO₂ emitting industries and nearby geological storage

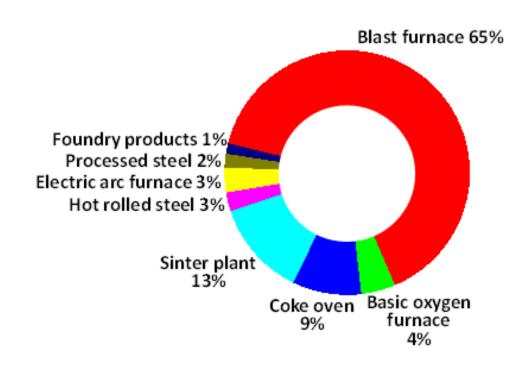
WP7: Dissemination, communication and public engagement

Presentation overview

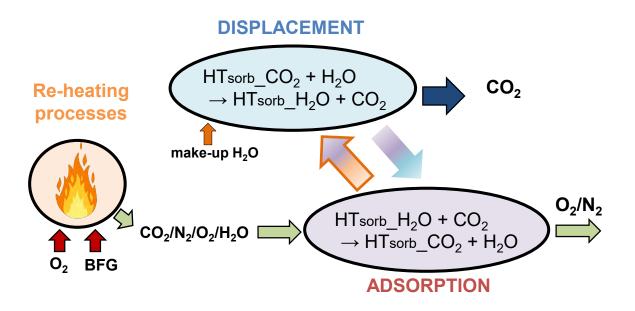
- C⁴U processes integrated in the steel mill
- The selection of the benchmark processes and their technoeconomic performance
- The integration of the C⁴U in industrial clusters: challenge and opportunity
- Conclusions

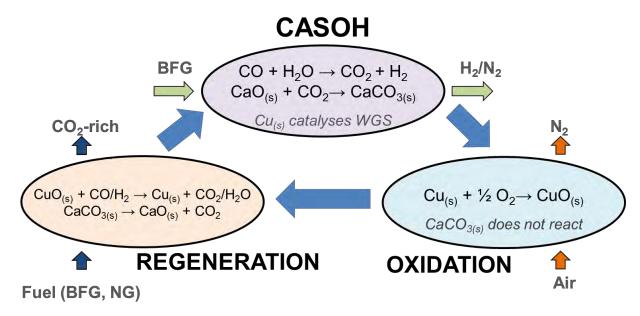
WP 3 - Integration of CO₂ capture technologies in steel plant





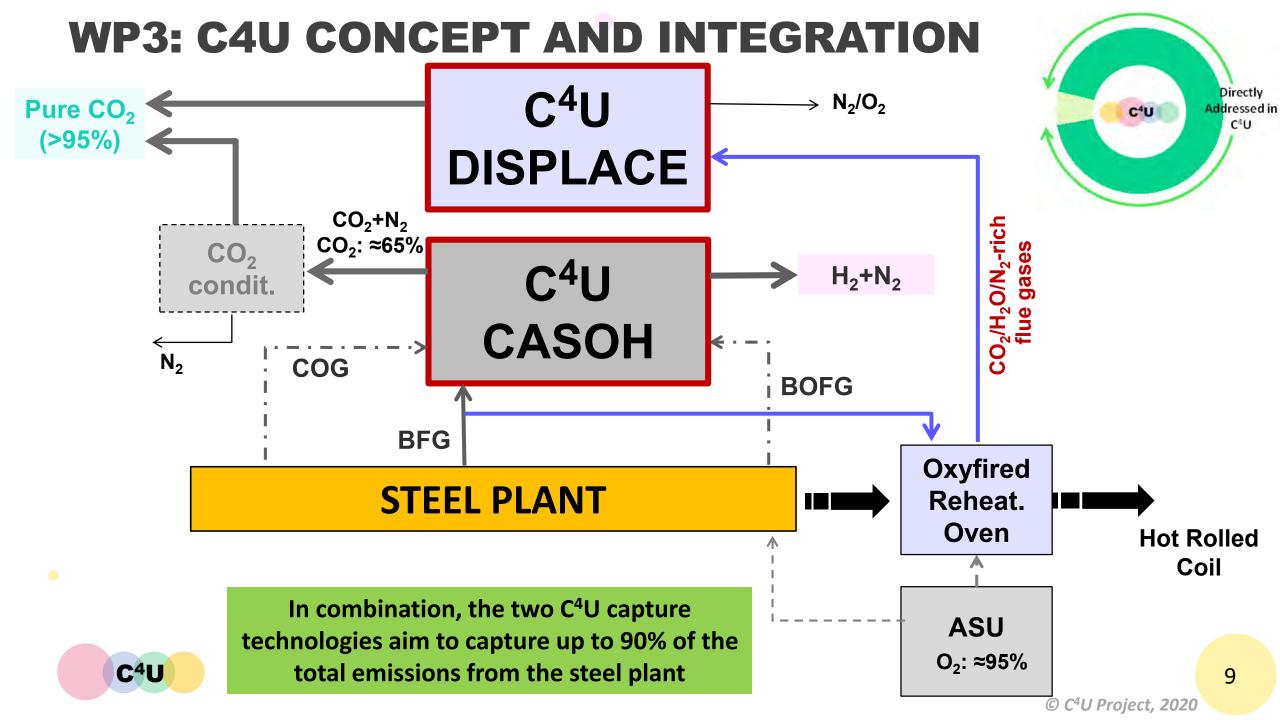
Integrated steelworks: a complex plant




Breakdown of contribution to CO₂ emissions

C⁴U gas-solid technologies

DISPLACE CASOH



More details will be available tomorrow:

SESSION 3B

12.45-13.05 (CET)

P. Cobden, C. Abanades - Pilot preparation for demonstration in the C⁴U project

WP3: METHODOLOGY

Task 3.1

- Methodology for the techno-economic assessment
- Reference case definition
- CO₂ capture process modelling (process design)

Task 3.2

- Parametric performance of the CO₂ capture technologies, both the reference and the C⁴U ones
- SPECCA and Cost of CO₂ avoided

Task 3.3

- Process design package for a full scale
- Cost estimation of the capture processes

Task 3.4

- The optimal integration of the C⁴U technologies in the integrated steel plant
- Determine the energy (SPECCA) and costs (Cost of CO₂ avoided) for the C⁴U technologies at defined CO₂ avoidance rates and CO₂ purities.

WP3: METHODOLOGY

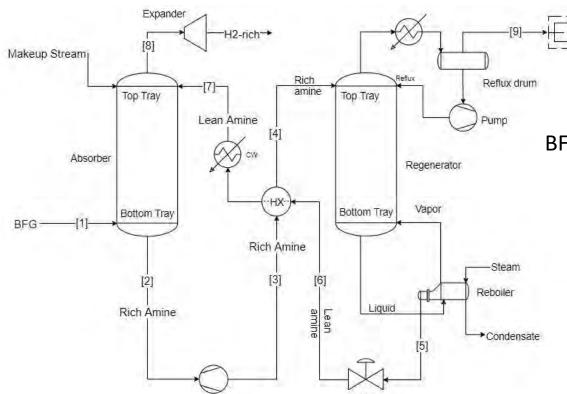
Task 3.1

- Methodology for the techno-economic assessment
- Reference case definition
- CO₂ capture process modelling (process design)

Task 3.2

- Parametric performance of the CO₂ capture technologies, both the reference and the C⁴U ones
- SPECCA and Cost of CO₂ avoided

Task 3.3


- Process design package for a full scale
- Cost estimation of the capture processes

Task 3.4

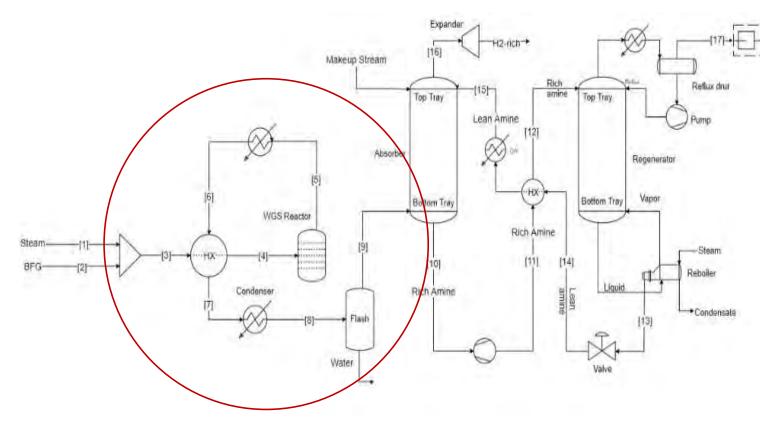
- The optimal integration of the C⁴U technologies in the integrated steel plant
- Determine the energy (SPECCA) and costs (Cost of CO₂ avoided) for the C⁴U technologies at defined CO₂ avoidance rates and CO₂ purities.

Benchmark process: MDEA pre-combustion separation – Base case

DCF: 27.4% CO, 0.9% CO₂, 2.9% H₂, 64.7% N₂, 0.2% C₂H₄, 3.7% H₂O

Plant size: 3.16 Mton_{HRC}/y

BFG flow rate: 125.1 kg/s

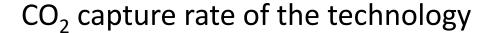

BFG composition: 22.7% CO, 21.2% CO_2 , 2.4% H_2 , 53.5% N_2 , 0.2% C_2H_4

Acid gas to storage

Parameter	Value
MDEA CO ₂ absorption process	
MDEA/water content in the lean solvent (%wt)	25/72
Absorber stage number	20
Solvent/CO ₂ ratio, (%wt basis)	3/25
Stripper stage number	20
Steam condition at the reboiler (bar)	6.0
CO ₂ delivery pressure (bar)	110
CO ₂ delivery temperature (°C)	25

Benchmark process: MDEA pre-combustion separation – Enhanced Capture

DCF: 6.3% CO, 2.2% CO₂, 23.9% H₂, 61.8% N₂, 5.5% H₂O


Parameter	Value	
MDEA CO absorption process	Same as	
MDEA CO ₂ absorption process	before	

HT WGS reactor

Steam-to-CO ratio	1.5
Inlet Pressure (bar _a)	2.9
Inlet temperature (°C)	300
CO conversion	76.3%
(calculated at the equilibrium)	70.570

METHODOLOGY: MAIN INDEXES

$$CCR[\%] = 1 - \frac{(\dot{N}_{CO_2} + \dot{N}_{CO} + \sum \zeta_c \cdot \dot{N}_c)_{out}}{(\dot{N}_{CO_2} + \dot{N}_{CO} + \sum \zeta_c \cdot \dot{N}_c)_{in}}$$

Specific Primary Energy Consumption for CO₂ Avoided

$$SPECCA \left[\frac{MJ_{LHV}}{kg_{CO_2}} \right] = \frac{\left(\frac{1}{\eta_{capture}} - \frac{1}{\eta_{no,capt}} \right)}{E_{CO_2,no\ capt} - E_{CO_2,capture}}$$

Levelized Cost of Decarbonized Fuel

$$LCODF\left[\frac{\epsilon}{GJ}\right] = \frac{TAC\left[\frac{M\epsilon}{y}\right]}{\dot{m}_{DCF} \times LHV_{DCF} \times h/y} \times 1000$$

CO₂ avoidance cost

$$CCA\left[\frac{\epsilon}{t_{CO_2}}\right] = \frac{LCODF_{Capture} - LCODF_{ref}}{E_{CO_2,ref} - E_{CO_2,capture}}$$

Additional cost of HRC for decarbonised steel mill

$$\Delta C_{HRC} \left[\frac{\notin}{t_{HRC}} \right] = \frac{TAC_{capture} + \Delta C_{el,capture} - TAC_{no\ capt}}{\dot{m}_{HRC}}$$

PERFORMANCE COMPARISON – TECHNO-ECONOMICS

	Unit	no capture	Base case	Enhanced
Steel mill size	Mt _{HRC} /y	3.16	3.16	3.16
Carbon Capture Rate	[%]		46%	83%
Cold gas efficiency	[%]	100.0%	100.0%	90.5%
Overall energy efficiency	[%]	100.0%	81.8%	56.7%
CO ₂ specific emissions	$[kg_{CO2}/GJ_{LHV}]$	267.1	153.38	51.19
CO ₂ capture avoidance	[%]		42.6%	80.8%
ΔCO ₂ specific emissions ^{a)}	$[kg_{CO2}/t_{HRC}]$	711.9	383.56	120.28
SPECCA	$[\mathrm{MJ}_{\mathrm{LHV}}/\mathrm{kg}_{\mathrm{CO2}}]$		1.96	3.54

	Unit	no capture	Base case	Enhanced
LCODF	[€/GJ]	5.20	9.73	14.78
Δcost of HRC	[€/t _{HRC}]		11.99	21.65
CO ₂ avoidance cost	[€/t _{CO2}]		39.84	49.38

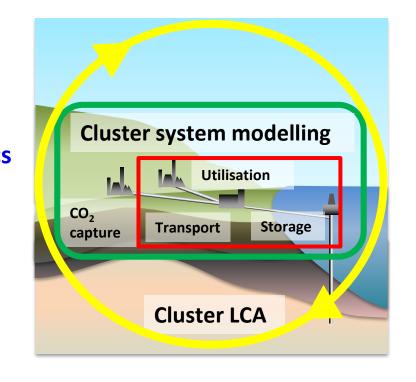
WP4 - Integration of CO₂ Capture in Industrial Clusters

WP4: OBJECTIVES

Cluster 3 industrial port areas North Sea Port, Port of Antwerp and Port of Rotterdam responsible of 1/3 or CO_2 emissions from Benelux, approx. 60 Mt/a

Define common CO₂ transportation infrastructure for geological storage up to 10 Mt CO₂/a in the depleted gas fields (P18 fields)

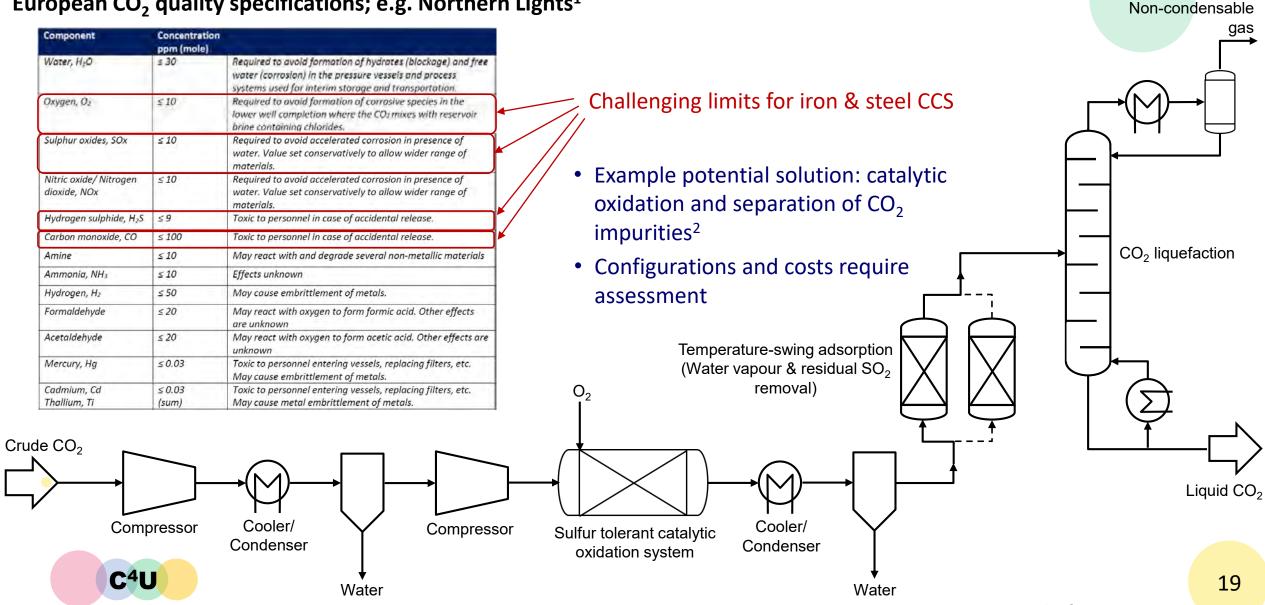
Perform the whole economic, safe and environmental LCA of the integrated industrial cluster of the North Sea Port area.


WP4 - INTEGRATION OF CO₂ CAPTURE IN INDUSTRIAL CLUSTERS

Task 4.1 Transport, utilisation and storage safety and operability

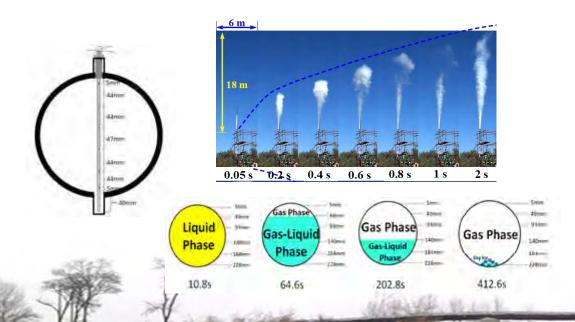
impacts Experimental and computational studies to evaluate the impacts of impurities in the CO₂ streams captured from steel plants, on the CO₂ utilisation, transport and storage

Task 4.2 CCUS cluster whole-system modelling and operational logistics techno-economic evaluation to assess energy and cost penalties as a function of the CO₂ purity in the North Sea Port cluster for 2030 and 2050 decarbonisation scenarios.


Task 4.3 Life Cycle Assessment (LCA) of the North Sea Port CCS cluster LCA assessment of the environmental impact of the North Sea Port CCS cluster.

WP4: CO₂ purification challenge

European CO₂ quality specifications; e.g. Northern Lights¹


¹ Norwegian CCS Demonstration Project Norcem FEED, https://ccsnorway.com/

² Praxair. EP0952111A1. CO₂ purification system, 1999.

PIPELINE DECOMPRESSION EXPERIMENTS

OBJECTIVES

This task involves performing controlled pipeline decompression tests to assess the risk of solid CO₂ formation and transition to two-phase flow

Medium-scale test pipeline 40 m long, 2" i.d. (INERIS)

CONCLUSIONS

The C⁴U project will assess two advanced CO₂ capture technologies with respect to the solvent-based process which currently costs 50 €/tonCO₂ with a maximum capture efficiency of 83%

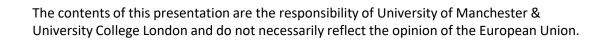
The sensitivity analysis at large scale on C⁴U technologies will include feedstock quality and CO₂ quality uses interlinking 2 WPs

The study will focus specifically on 3 industrial port areas North Sea Port, Antwerp and Rotterdam responsible of 1/3 or CO_2 emissions from Benelux, approx. 60 Mt/a

Perform the whole economic, safe and environmental LCA of the integrated industrial cluster of the North Sea Port area

THANK YOU

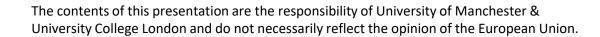
Questions?

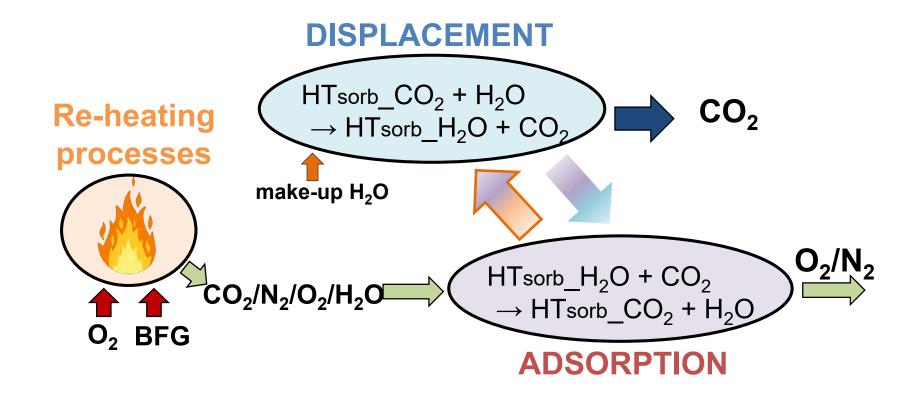


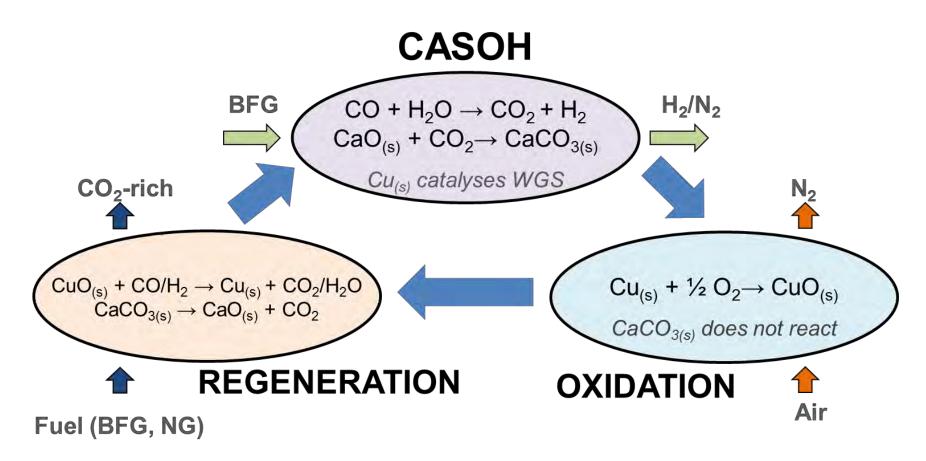
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884418

Advanced Carbon Capture for Steel Industries Integrated in CCUS Clusters

Supplementary slides






This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884418

DISPLACE: High temperature sorption-displacement process using hydrotalcites for CO₂ sorption and recovery of steam

CASOH: Calcium Assisted Steel mill Off-gas Hydrogen process for blast furnace gas

PERFORMANCE COMPARISON - TECHNICAL

	Base case	Enhanced
Total Fuel Input (MW)	294.67	294.67
Net power consumption (MW)	14.9	33.7
CO ₂ flow rate for storage (kg/s)	36.5	65.8
Specific electricity demand (kWh/kg _{CO2})	0.113	0.142
Reboiler heat duty (MW)	50.1	91.4
Reboiler heat duty/CO ₂ flow rate for storage (MJ/kg _{CO2})	1.3	1.3
Required heat for WGS (MW)	-	66.5
CO ₂ capture efficiency (%)	46.5	83.80
CO ₂ purity for storage (%)	98.2	98.1
Thermal energy output (DCF)(MW)	294.61	266.80

PERFORMANCE COMPARISON – TECHNICAL

	Unit	no capture	Base case	Enhanced
Steel mill size	Mt _{HRC} /y	3.16	3.16	3.16
Thermal input (BFG LHV)	[MW]	294.67	294.67	294.67
Thermal output				
(decarbonised fuel LHV)	[MW]	294.67	294.61	266.80
Heat requirements	[MW]		50.62	142.47
Electricity requirements	[MW]		14.90	33.62
Carbon Capture Rate	[%]		46%	83%
Cold gas efficiency	[%]	100.0%	100.0%	90.5%
Overall energy efficiency	[%]	100.0%	81.8%	56.7%
CO ₂ specific emissions	$[kg_{CO2}/GJ_{LHV}]$	267.1	153.38	51.19
CO ₂ capture avoidance	[%]		42.6%	80.8%
ΔCO ₂ specific emissions ^{a)}	$[kg_{CO2}/t_{HRC}]$	711.9	383.56	120.28
SPECCA	$[\mathrm{MJ}_{\mathrm{LHV}}/\mathrm{kg}_{\mathrm{CO2}}]$		1.96	3.54

PERFORMANCE COMPARISON - ECONOMICS

	Unit	no capture	Base case	Enhanced
Steel mill size	Mt _{HRC} /y	3.16	3.16	3.16
MDEA unit	[M€]		37.10	56.65
WGS reactors+ heat exchangers	[M€]		0	12.36
Gas expander	[M€]		3.73	2.80
CO ₂ compressor units	[M€]		16.66	19.98
Pumps	[M€]		0.02	0.02
Total Equipment Cost	[M€]		57.50	91.81
Total Direct Plant Cost	[M€]		117.31	187.29
Total Plant Cost	[M€]		155.14	247.69
Annualised Plant Cost	[M€/y]		17.69	28.24
Fuel Cost	[M€/y]	43.49	43.49	43.49
variable, heat and electricity	[M€/y]		12.44	27.78
fixed O&M	[M€/y]		7.76	12.38
Total Annualised cost	[M€/y]	43.49	81.37	111.9
LCODF	[€/GJ]	5.20	9.73	14.78
Δcost of HRC	[€/t _{HRC}]		11.99	21.65
CO ₂ avoidance cost	[€/t _{co2}]		39.84	49.38

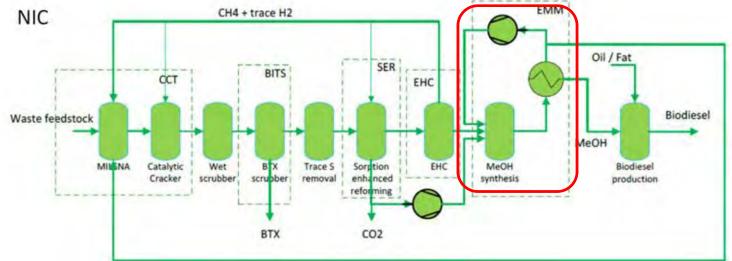
CONVERGE: CarbON Valorisation in Energy-efficient Green fuels

Green methanol synthesis for biodiesel production

16-17 th February, Converge Workshop

Objectives: Membrane assisted methanol synthesis

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135

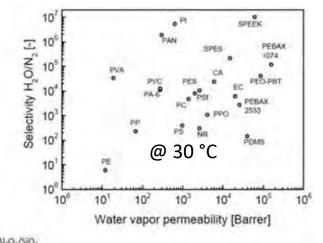


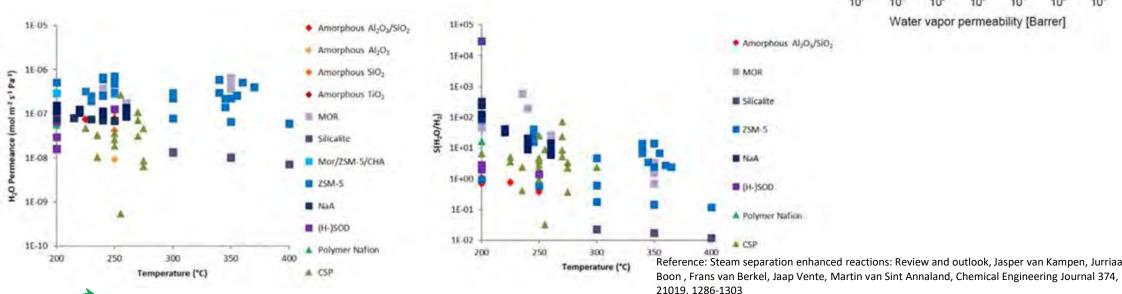
Membrane assisted methanol synthesis.

- Develop stable membranes at reaction conditions
- Develop multi-tube membrane reactor, targeted conversion for feed CO₂/H₂ 33% per pass
- Demonstration of integrated process at TRL 5

Partners involved:

TNO





Membrane development targets:

- 1) Stability at the methanol operating T and p (175-275°C), up to 100bar
- 2) High selectivity for steam and methanol
- 3) High steam/methanol permeability → high flux

• Amorphous microporous APTES-PA (<u>Aminopropyl triethoxysilane-Polyamide</u>)

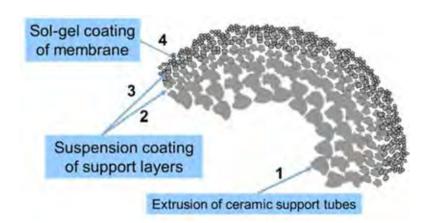
BETSE (1, 2-bis (triethoxysilyl) ethane)

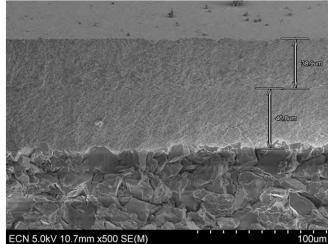
Polymeric SPEEK (sulfonated poly(ether ether ketone))

PI (Poly Imides)

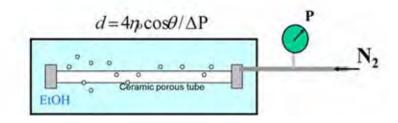
PBI (Polybenzimidazol)

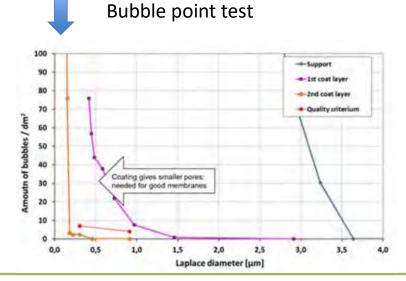
PDMS (Polydimethylsiloxane)


Li-Nafion

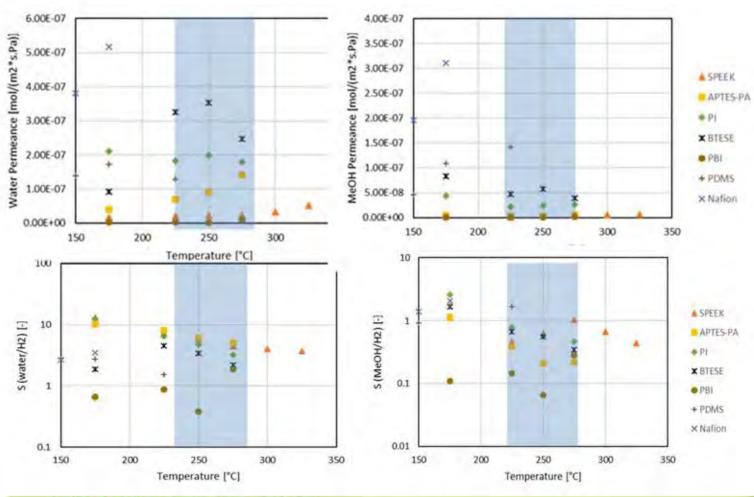

Membrane synthesis procedure -support

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135





Membrane support layers


evaporation
coat vessel
suspension
Coating process

CONVERGE
CarbON Valorisation in Energy-efficient Green fuels

Test conditions:

- p_{feed} =35 bar, p_{perm} =1.5 bar, no sweep
- 60% H₂, 10% (50/50)methanol/steam, 20% CO₂, 1% CO, 9% N₂

Nafion, BETSE, PI highest steam and MeOH permeance

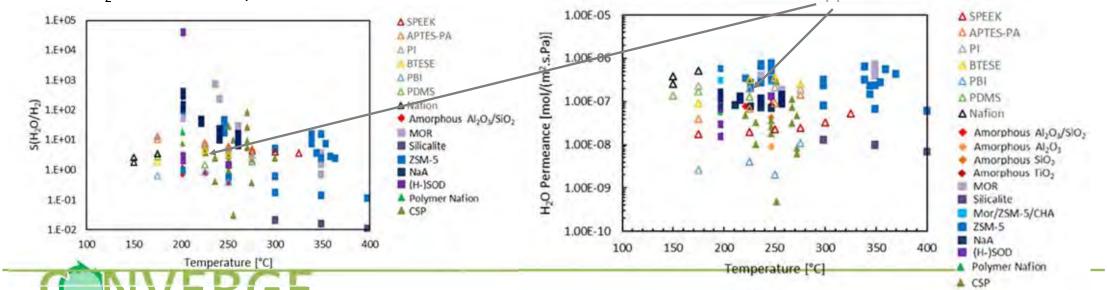
- BETSE performance decreases at 275°C, Nafion not selective at T>225°
- H₂O/H₂ selectivity highest for APTES-PA, SPEEK and PI
- MeOH/H₂ selectivity highest for PDMS 1.7, PI and BETSE ~ 0.6-0.8

Pre-selection:

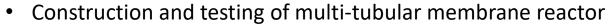
- 1) PI
- 2) BETSE
- 3) APTES-PA

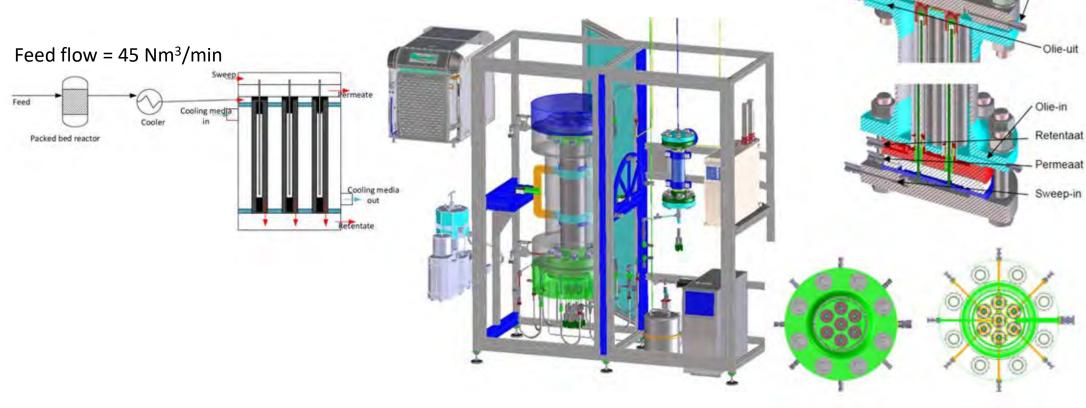
PDMS, Nafion → no selectivity > 225 °C SPEEK→ low H₂O and MeOH permeance (10X lower than PI)

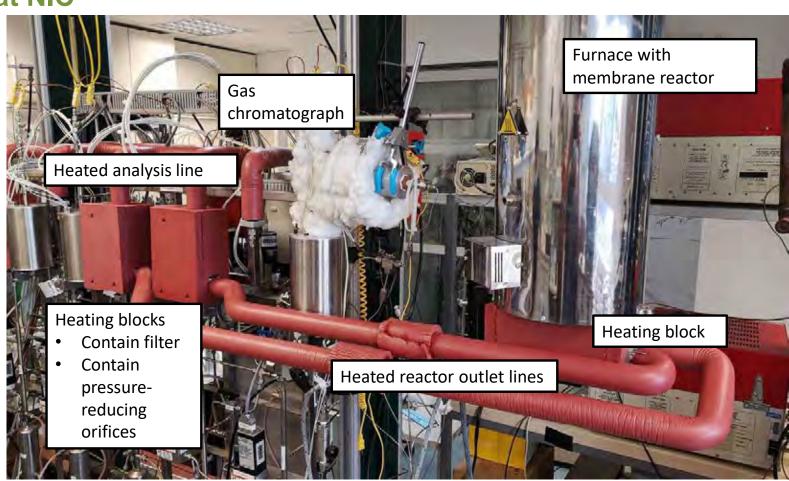
PBI → low permeance, low selectivity


Conclusions

PI membrane preselected as the most promising to reach conversion targets. Membrane performance comparison steam/MEOH/mix (T_{range} =225-250 °C)

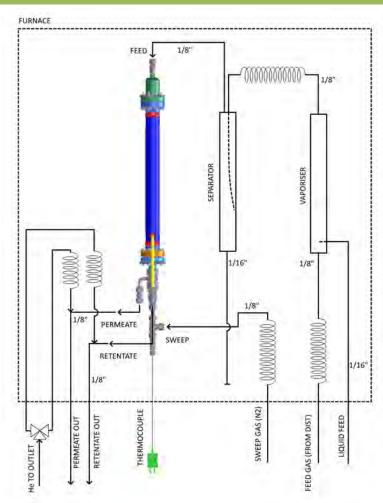

		PI	BETSE	APTES
•	H ₂ O/H ₂ selectivity:	4.7-6.5	3.5-4.3	6-8
•	MEOH/H ₂ selectivity:	0.6-0.8	0.6-0.7	0.2-0.4
•	H ₂ O permeance:	PI	1.6 [.] PI	PI/2.3
•	MeOH permeance:	PI	2.2 [.] PI	PI/8.4
	H ₂ O>H ₂ >MEOH>CO ₂ >CO≈N ₂			


• Steam/H₂ behaviour compares well to literature



Testing rig upgrade at NIC

- Testing of the prominent membranes supplied by TNO.
- Advantages of NIC system:
 - high pressure op.
 (80 bar) and
 - high temperature op. (350°C).



Inside the furnace with the membrane module

- Feed gas saturation with H₂O or MeOH to:
 - determine permeation and
 - simulate thermodynamical equibrium gas mixture.
- He dillution to determine in-situ flow rates of permeate and retentate by gas chromatography.
- CO₂ is pumped into the feed gas using HPLC pump before membrane module.

Modelling procedure

Selected membrane characteristics

- Permeances for all compounds
- T and P dependence
- Determined empirically

Reaction kinetics for the selected catalyst

- Packed-bed reactor kinetic catalytic tests
- Regression of kinetic data using a PBR model (already developed)

Membrane reactor model

Mass transport phenomena

- Convection
- Diffusion
- Permeation through the membrane

Reaction phenomena

- Catalytic surface microkinetic reactions
- Adsorption/desorption

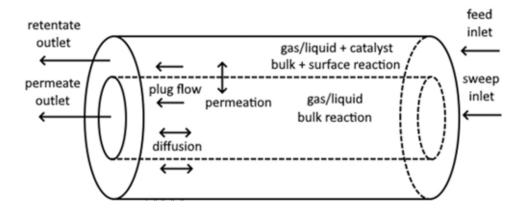
Model validation

 Catalytic experiments in membrane reactor

Exploration of different operating windows

- Inlet composition
- Temperatures
- Pressures
- Reactor geometry and size

Process optimization



Multi-tube system modelling

Model development

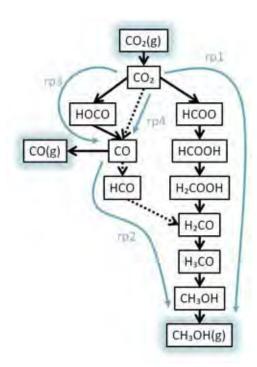
Retentate MB:

$$\frac{\partial C_{i}}{\partial t} = -v_{x,ret} \frac{\partial C_{i}}{\partial x} + \frac{D_{i}}{\tau} \frac{\partial^{2} C_{i}}{\partial x^{2}} + C^{*} \frac{1 - \varepsilon}{\varepsilon} R_{i,cat} + R_{i,bulk} - \frac{\dot{N}_{memb.}}{V_{ret} \varepsilon}$$

Permeate MB:

$$\frac{\partial C_i}{\partial t} = -v_{x,perm} \frac{\partial C_i}{\partial x} + D_i \frac{\partial^2 C_i}{\partial x^2} + R_{i,bulk} + \frac{\dot{N}_{memb.}}{V_{perm}}$$

Flow through the membrane:


$$\dot{N}_{memb.} = A_{memb.} P_i (p_{i,ret} - p_{i,perm})$$

$$= A_{memb.} P_i RT (c_{i,ret} - c_{i,perm})$$

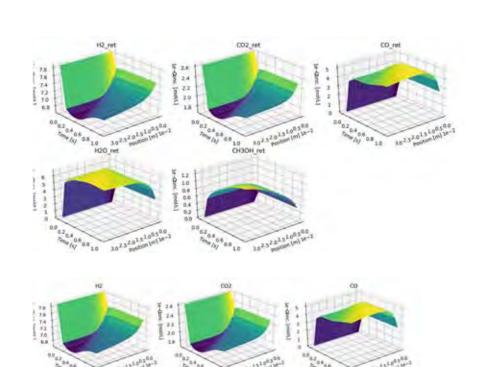
Model development: Kinetics of MeOH synthesis

Overall reaction scheme. Black arrows represent the elementary reaction steps and blue arrows the reaction pathways. Reaction species in black squares without "(g)" are adsorbed on the catalyst's surface.

- Surface reaction mechanism for methanol synthesis on CuZnAl
- Active sites: Cu (&), Zn (*)
- 5 gas phase species, 11 surface species
- 16 reversible surface reactions, 5 of which are adsorption/desorption reactions
- The constants obtained from literature were fitted to experimental data

	optimized			original Zn/Cu(211)				
Reaction	Afor [s-1]	Eafor [kJ/mol]	Aback [s-1]	Eaback [kJ/mol]	Afor [s-1]	Eafor [kJ/mol]	Aback [s-1]	Eaback [kJ/mol]
H2 + & + & ⇌ H& + H&	1.00E+03	51.00	1.77E+12	78.00	1.00E+03	51.00	1.77E+12	78.00
H& + CO2* ⇌ HOCO*&	4.62E+13	83.80	8.23E+13	104.28	3.91E+12	95.53	1.00E+11	123.51
H& + H2CO*& ⇌ H3CO*& + &	3.12E+08	8.47	1.17E+11	88.29	4.66E+12	11.58	1.00E+11	114.82
H& + H3CO*& ⇒ CH3OH*& + &	3.28E+12	112.01	6.98E+12	87.02	1.99E+14	143.77	1.44E+13	116.75
H& + CO2* ⇌ HCOO*&	1.69E+11	58.96	5.97E+14	142.86	3.57E+12	74.30	1.00E+11	188.16
H& + HCOO*& ≠ HCOOH*& + &	4.69E+09	60.20	2.71E+10	75.73	7.93E+12	114.82	1.77E+11	48.25
H& + HCOOH*& ≠ H2COOH*& + &	1.13E+12	87.74	6.71E+13	75.98	1.26E+12	58.86	9.57E+13	58.86
H2COOH*& + * ⇌ H2CO*& + OH*	1.82E+13	59.21	4.26E+11	17.08	2.53E+13	50.17	1.86E+11	16.40
H& + OH* ⇌ H2O*+ &	6.43E+09	72.66	2.89E+10	72.73	1.22E+13	77.19	4.83E+11	70.44
CO2* + & ⇌ CO& + O*	3.98E+12	46.16	1.57E+12	52.88	1.04E+13	76.23	8.40E+12	65.61
H& + O* ⇌ OH*+&	5.90E+12	309.13	5.05E+10	226.11	1.88E+13	116.75	1.00E+11	198.77
HOCO*& ≠ CO& + OH*	3.16E+10	27.99	4.89E+11	65.23	6.60E+13	22.19	1.00E+11	58.86
CO2 + * ⇌ CO2*	7.53E+02	-2.29	2.9E+09	-29.13	7.41E+02	-2.01	1.00E+13	-30.88
CH3OH + * + & ⇌ CH3OH*&	2.59E+01	-0.99	1.34E+13	43.01	8.68E+02	-2.01	1.00E+13	39.56
H2O + * ⇌ H2O*	8.38E+02	-1.69	1.31E+12	39.45	1.16E+03	-2.01	1.00E+13	37.63
CO + & ≠ CO&	2.86E+02	-0.98	3.25E+13	59.12	9.28E+02	-2.01	1.00E+13	98.42

Reactions and reaction rate constants (original from literature and fitted to experimental data)




Model development

Modeling in the programme CERRES developed at NIC

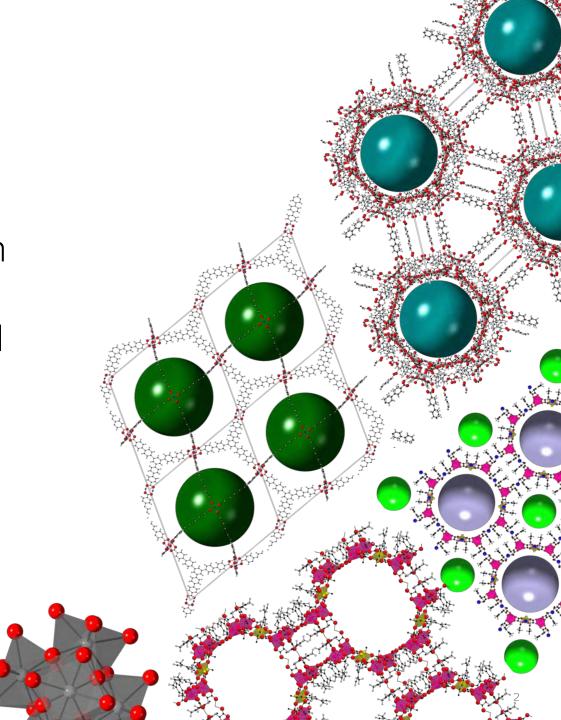
- Simulation of 14 different types of chemical reactors (including membrane reactor)
- Complex user-defined chemical kinetics
- Model-experiment compare
- Parameter optimization
- Sensitivity analysis
- Efficient computation
- Plot results and export data
- Easy to use (graphical user interface)
- Free for academic/teaching use

www.cerres.org

The CONVERGE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 818135

CONVERGE: CarbON Valorisation in Energy-efficient Green fuels

WP4: Green methanol synthesis for biodiesel production


Agenda

Who is JM?

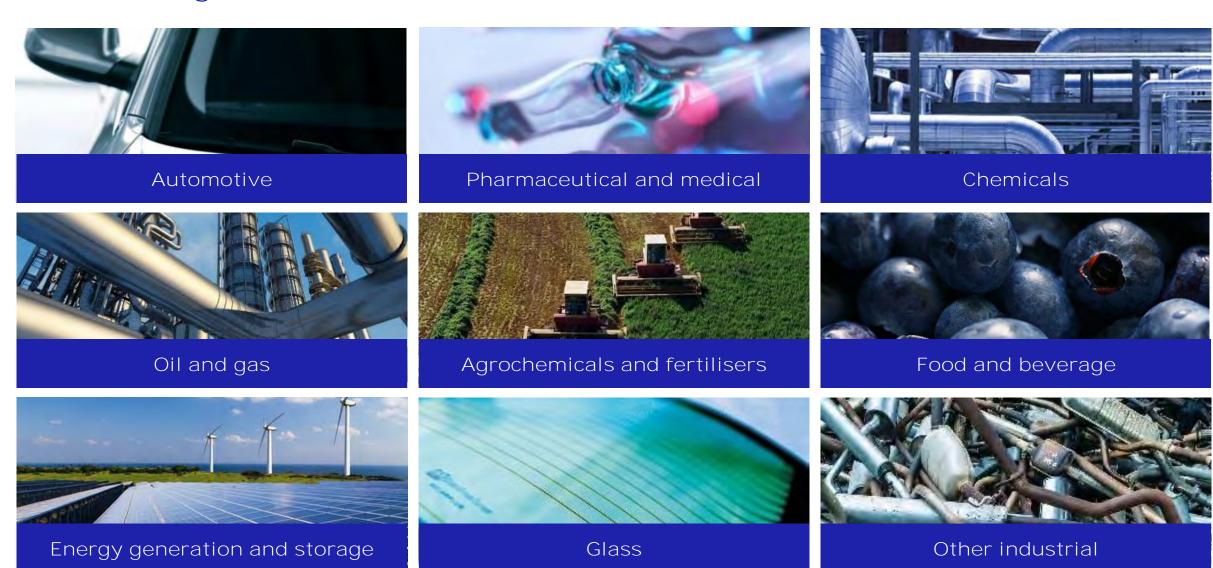
Our priorities for MOF research

MOF scale-up case study at JM

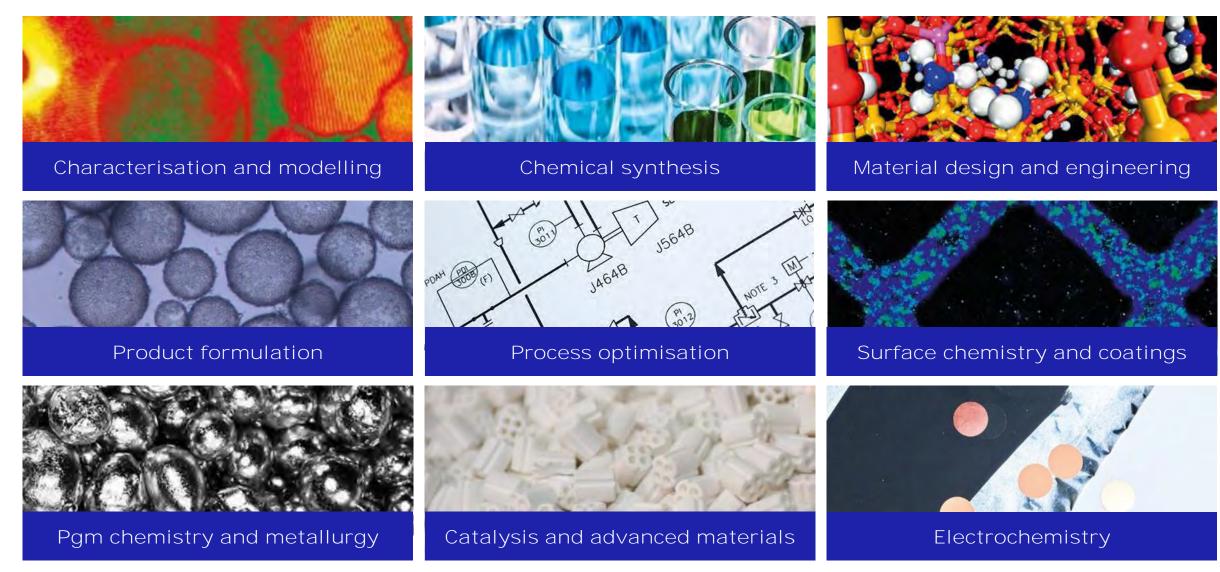
Aim to give an overview of MOF scale up work at JM.

A speciality chemicals company and a world leader in sustainable technologies

Over 200 years of history dating back to 1817

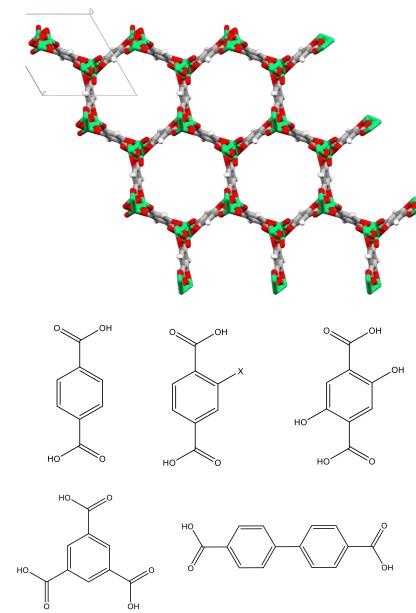

R&D Focused, with ~12% of employees working in R&D.

100+ PhDs funded by JM throughout world



We serve global markets

World class science and technology expertise

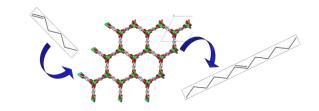


What are Metal-Organic Frameworks (MOFs)?

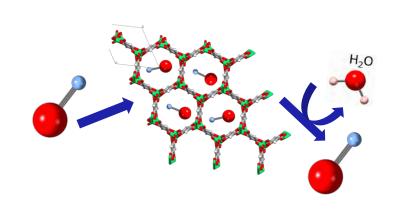
Functional hybrid materials consisting of metal nodes connected by organic linkers.


- High surface areas
 - 1 g of material possessing the same surface area as a football pitch
- Huge number of possible structures with ~70 k reported [1].
- Functionality arises from:
 - Porosity, pore structure, metal nodes & linker functional groups
- Certain MOFs are stable under harsh conditions
- Lots of academic interest over the last ~30 years
- Several products using MOFs now exist
 - TruPick™ & ION-X

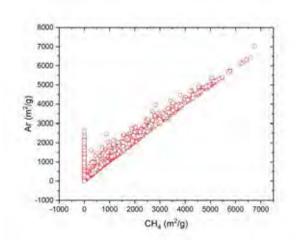
Need to develop large scale, cost effective scaleup routes to make these application a reality



Current key priorities in JM MOF work

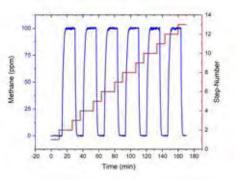

Separations and purification

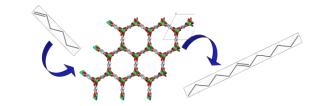
Fine Chemical Catalysis


Controlled release

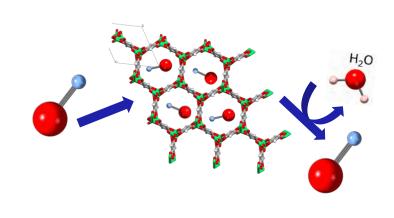
Forming and scale-up

Modelling

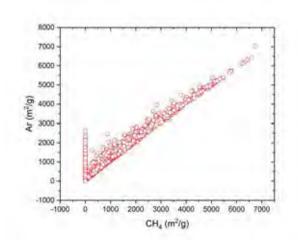

In-situ monitoring


Current key priorities in JM MOF work

Separations and purification



Fine Chemical Catalysis


Controlled release

Forming and scale-up

Modelling

In-situ monitoring

Scale-up considerations

Chemical

- Concentration
- Temperature
- Solvent

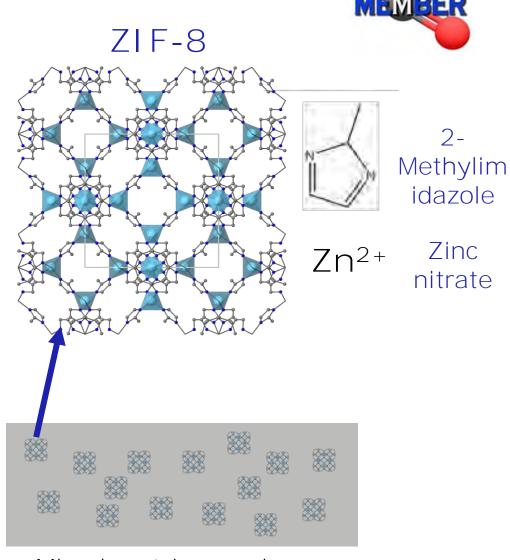
Physical

- Mixing
- Separation
- Washing
- Waste
- Product performance

Solvent	Safety Score	Health Score	Env. Score	Ranking
H ₂ O	1	1	1	Recommended
EtOH	4	3	3	Recommended
MeOH	4	7	5	Problematic
THF	6	7	5	Problematic
DMF	3	9	5	Hazardous
Sulfolane	1	9	7	Hazardous

D. Prat, et al., Green Chem., 2016, 18, 288-296

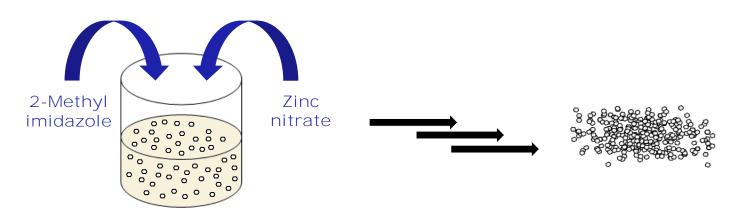
Reduction of raw materials is key for MOF scale-up


Nano ZIF-8 scale-up case study

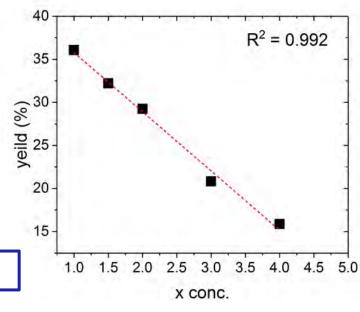
Properties

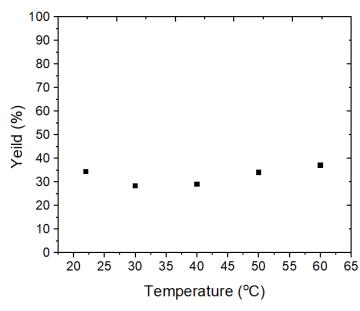
- Very high surface area ~ 1600 m²g⁻¹
- High thermal stability stable 400 °C
- Pore aperture 3.4 Å

Application


- Used in pre-combustion application separation of H₂/CO₂
- Nano sized needed for membrane applications

Mixed matrix membrane

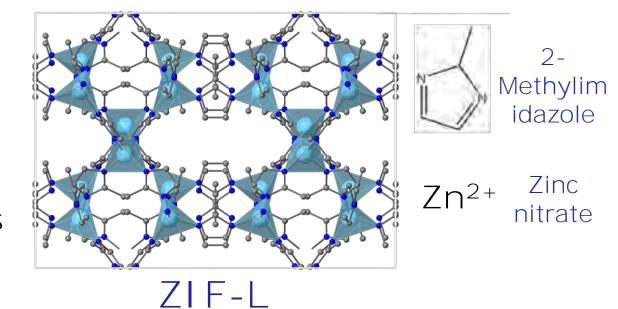

Original nano ZIF-8 route



$$Zn(NO_3)_2.6H_2O + 2C_4H_6N_2 \rightarrow Zn(C_4H_5N_2)_2 + 2H^+ + 2NO_3^- + 6H_2O_3$$

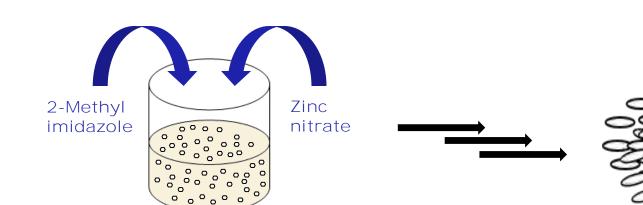
- Dilute conditions needed
 - Large quantities of Methanol used ~ 5 L
 MeOH needed for 5 g of nano ZIF-8

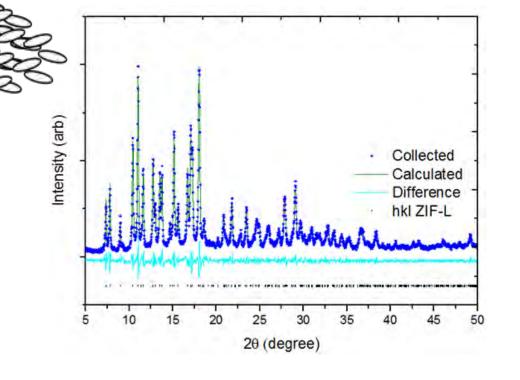
Parameter study showed its difficult to improve the original synthesis.



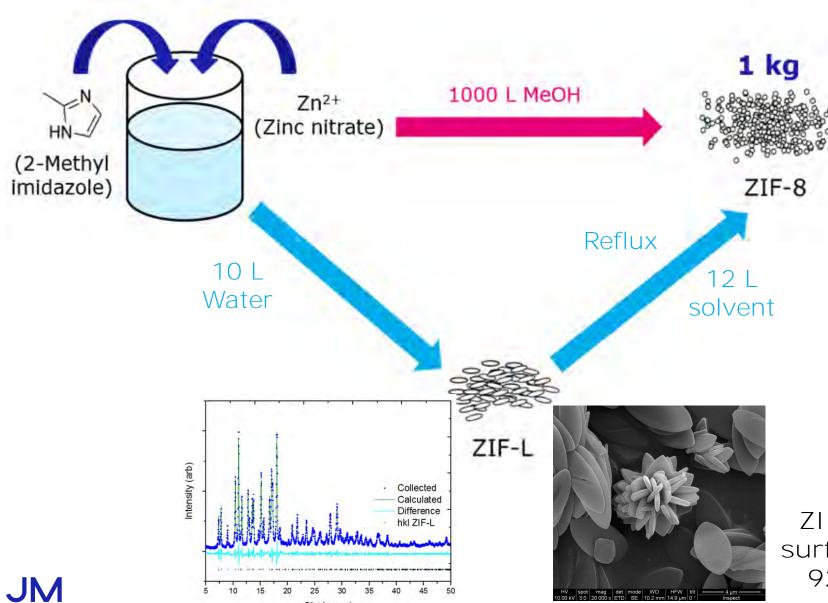
ZIF-L as an alternative route to nano ZIF-8

Properties

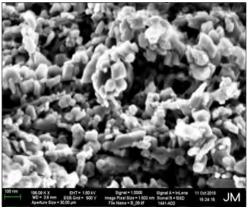

- ZIF-L is a dense phase polymorph of ZIF-8
- Consists of same raw materials as ZIF-8
- 2D material connected by linker molecules – leaf shape
- Low porosity 92 m²g⁻¹

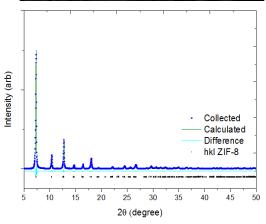


ZIF-L as an alternative route to nano ZIF-8



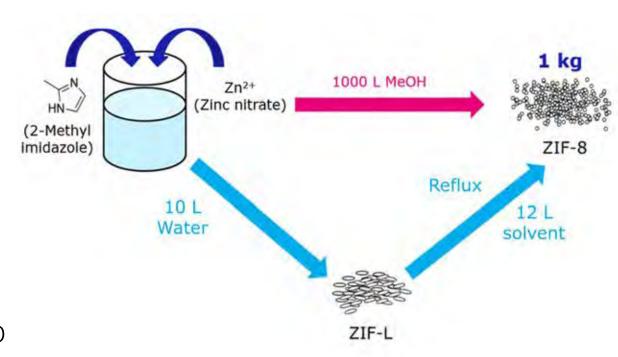
- Concentrated reaction
- High yield ~ 90 %





ZIF-L as an alternative route to nano ZIF-8

2θ (degree)


ZIF-8 BET surface area $\sim 1600 \text{ m}^2\text{g}^{-1}$

ZIF-L BET surface area 92 m²g⁻¹

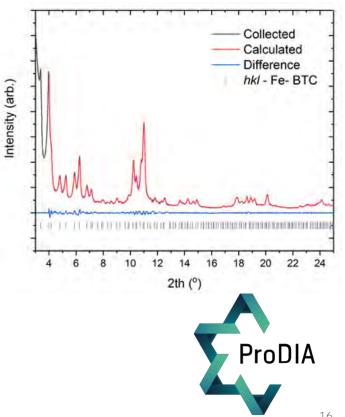
Nano-ZIF-8 case study summary

Developed scalable route

- Two order of magnitude solvent reduction
- Doubled overall all yield of nano-ZIF-8 synthesis
- Replaced methanol with nontoxic solvent
- Industrial scale concept for nano ZIF-8 designed.

7x reduction in cost to produce

Other scale-up examples Scale-up: Fe-BTC


- 60 L batch reaction vessel
- Washed in purpose built setup
- 15 kg MOF produced
- BET surface area ~1500 m²/g

Scale-up: CPO-27-Ni

- 10 kg CPO-27-Ni
- Used in heat pump and desalination demonstrator unit in Egypt

Summary

 Reducing raw materials cost key to developing large scale synthesis

Conventional scale-up methods not always valid

• Chemistry of MOFs is important

 Commercial large scale synthesis of MOFs can be achieved with the right understanding

Acknowledgments

JM

Felicity Massingberd-Mundy

Timothy Johnson

Stephen Poulston

New Applications Group - Sonning

Catalyst Research Group - Chilton

UNIZAR

Joaquin Coronas

Magdalena Malankowska

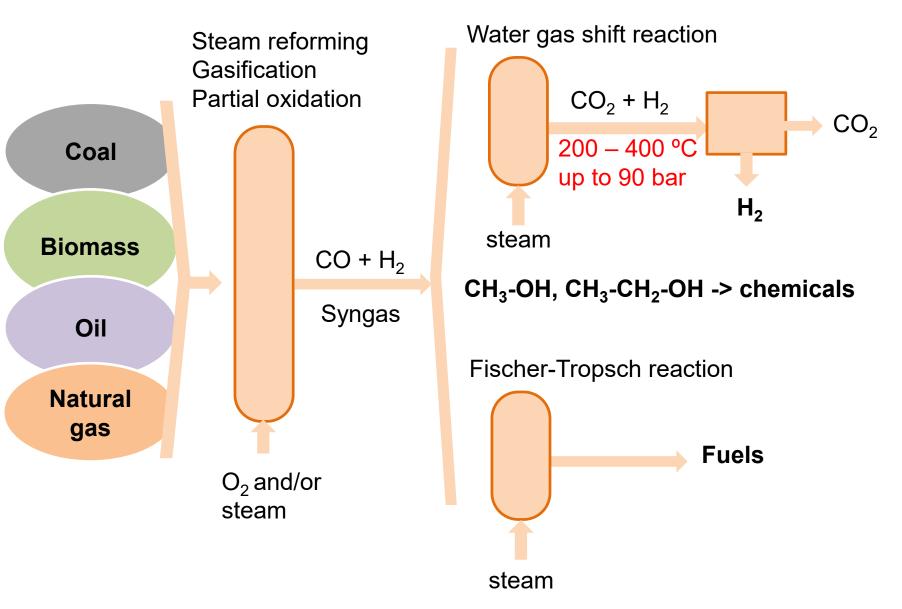
adam.deacon@matthey.com

WE CAN DO SO MUCH TOGETHER

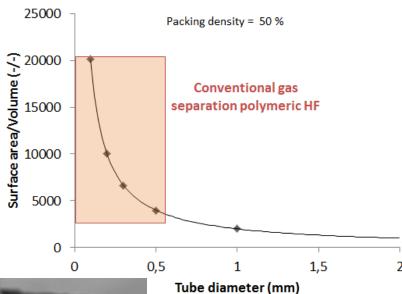
INTERNATIONAL WORKSHOP ON CO2 CAPTURE AND UTILIZATION TU/E - EINDHOVEN - 16-17 FEBRUARY 2021

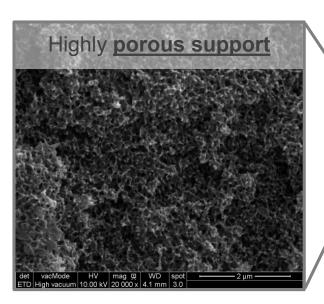
PBI based mixed matrix hollow fiber membranes for pre-combustion CO₂ capture

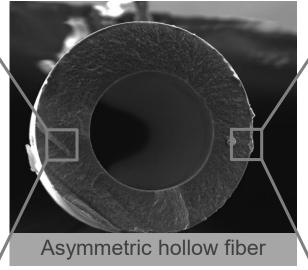
Dr Miren Etxeberria Benavides TECNALIA

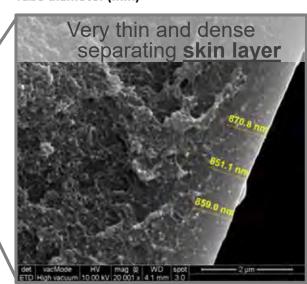


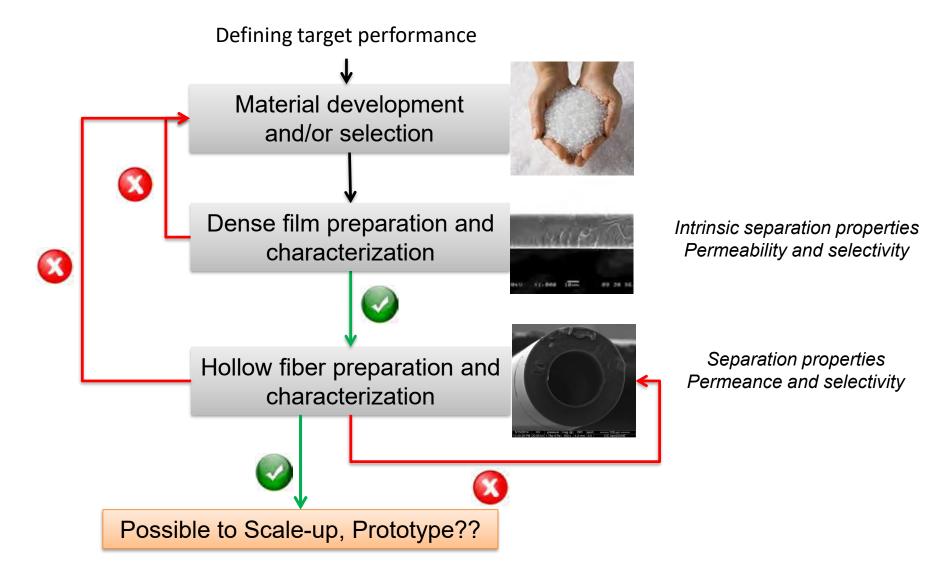
Pre-combustion CO₂ capture

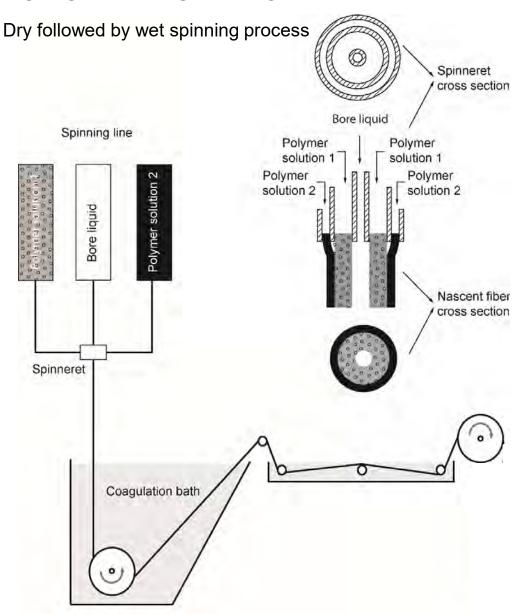

Chemical transformations before combustion = pre-combustion carbon capture




HOLLOW FIBER MEMBRANES







Membrane Development Strategy

HOLLOW FIBER SPINNING

Process parameters

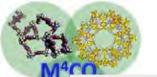
Dope Composition

Dope Flow rate

Bore Composition

Bore Flow Rate

Spinning Temp


Coagulation Bath Temp

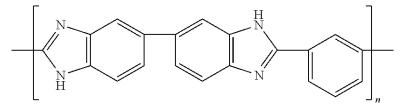
Air Gap height

Take-up rate

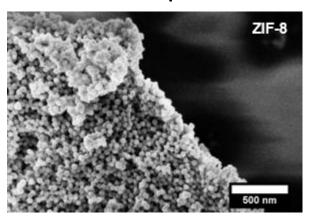
Room T

Humidity

M⁴CO₂ project



The M⁴CO₂ project aims at developing and prototyping Mixed Matrix Membranes based on highly engineered Metal organic frameworks and polymers (M4) for energy efficient CO₂ capture in power plants and other energy-intensive industries both for precombustion and post combustion applications

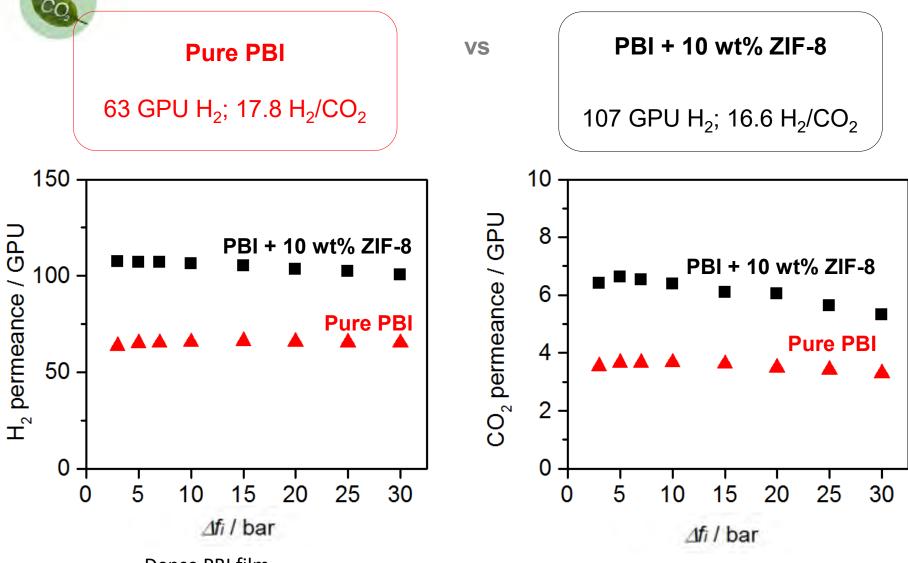

PBI Asymmetric hollow fiber

Tg 420ºC

Filler: ZIF-8 powder

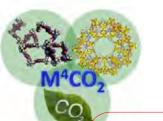
Particle size ~ <60 nm

Kinetic diameter (Å)


H₂ 2.89

CO₂ 3.3

https://doi.org/10.1016/j.seppur.2019.116347

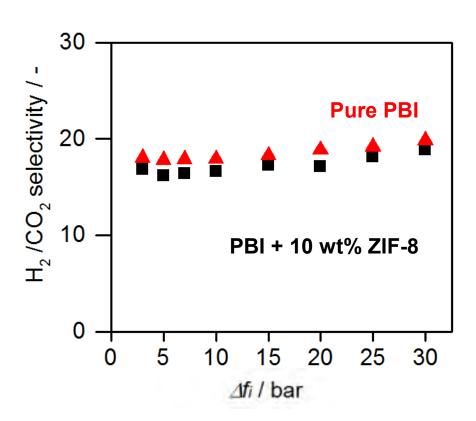


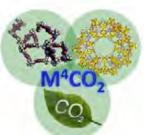
Single gas test (SG)

Dense PBI film 20 Barrer H₂; 20 H₂/CO₂

Journal of MembraneScience 461 (2014) 59-68

Single gas test (SG)

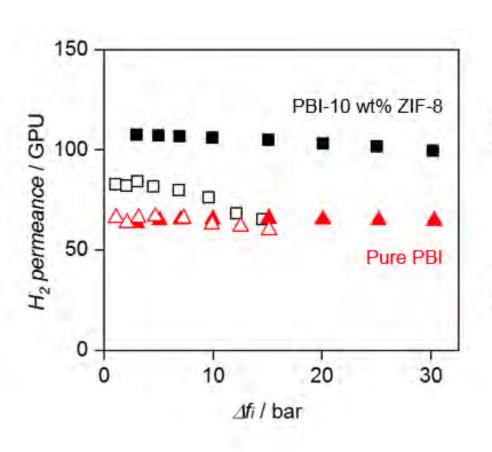

Pure PBI

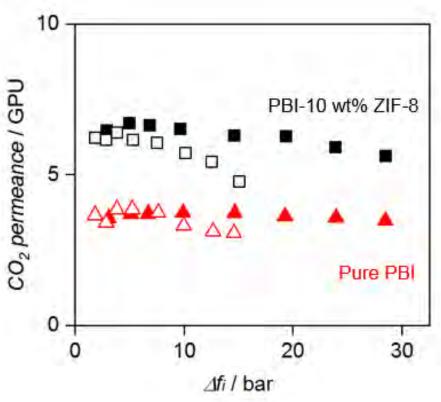

63 GPU H₂; 17.8 H₂/CO₂

VS

PBI + 10 wt% ZIF-8

107 GPU H₂; 16.6 H₂/CO₂

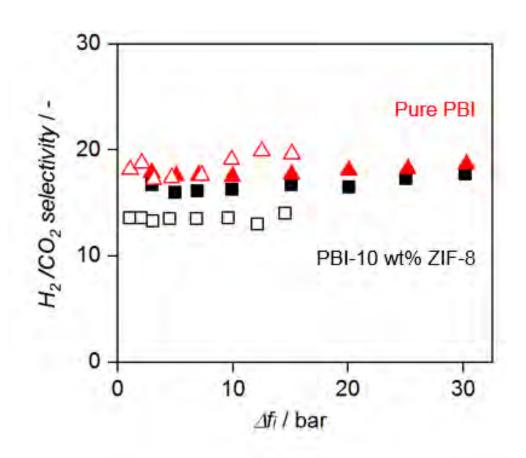


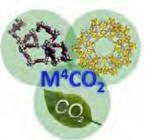


Single gas test (closed symbols)

VS

Mixed gas test (50/50 H₂/CO₂) (open symbols)

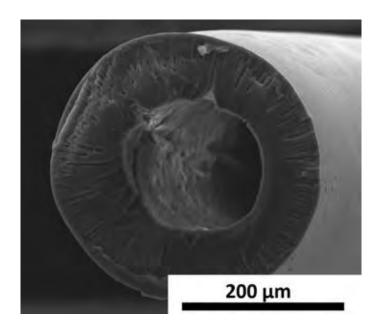




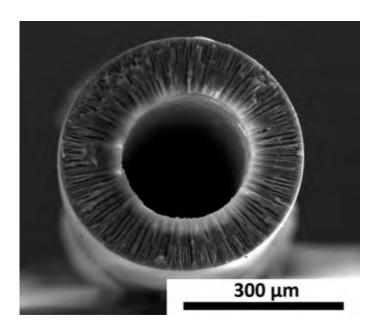
Single gas test (closed symbols)

VS

Mixed gas test (50/50 H₂/CO₂) (open symbols)



M⁴CO₂ project



Pure PBI

Maximum take up rate: 20 m/min OD/ID: 370 μm / 160 μm

PBI + 10 wt% ZIF-8

Maximum take up rate: 14 m/min OD/ID: 470 μm / 250 μm

Mechanical stability (Mandrel test)

MEMBER project

The key objective of the MEMBER Project is the **scale-up and manufacturing of advanced materials** (membrane and sorbents) and their demostration at industrially relevant conditions in novel membrane based technologies that outperform current technologies for pre- and post-combustion CO₂ capture in power plants as well as H₂ generation with integrated CO₂ capture

Prototype A

Pre-combustion CO₂ capture

MMM hollow fiber membranes

Prototype B

Post-combustion CO₂ capture

MMM hollow fiber membranes

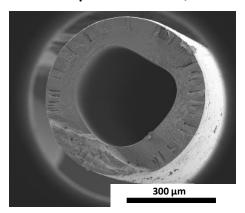
Prototype C

Pure H₂ production with integrated CO₂ capture

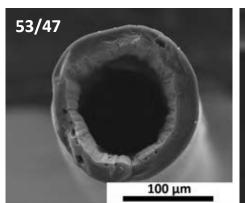
Pd-based membranes

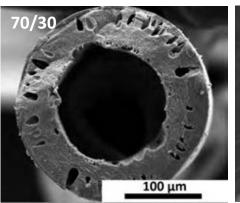
MEMBER project

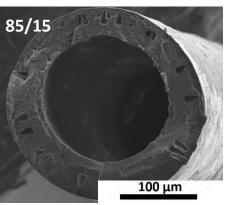
Objectives for PBI based membrane scaling up:


- Increase production rate (take-up rate)
- Decrease fiber dimensions
- Improve mechanical properties

MEMBER project


Take up rate: 6 m/min


 $540 \, \mu m / 340 \, \mu m$

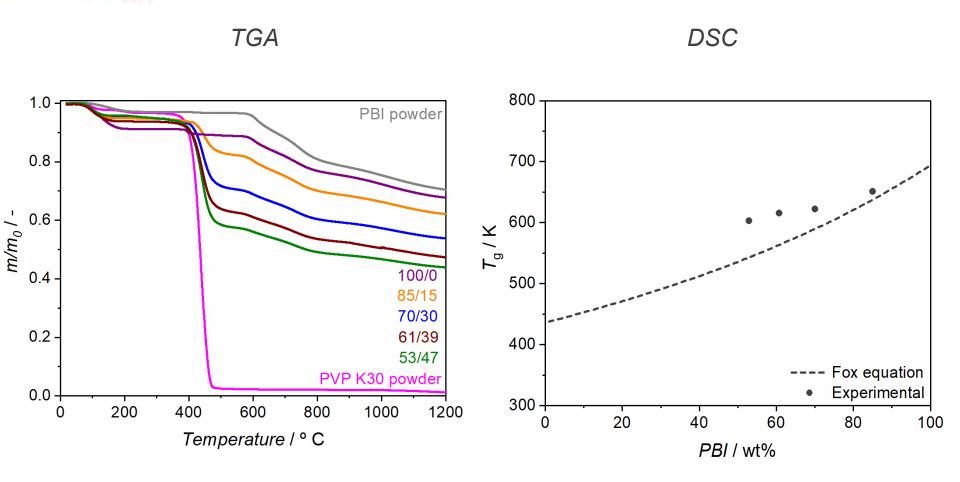

PBI/PVP

Take up rate: 25-50 m/min

61/39 100 μm

 $175 \, \mu m / 115 \, \mu m$

 $195 \, \mu m / 110 \, \mu m$


275 μm / 165 μm

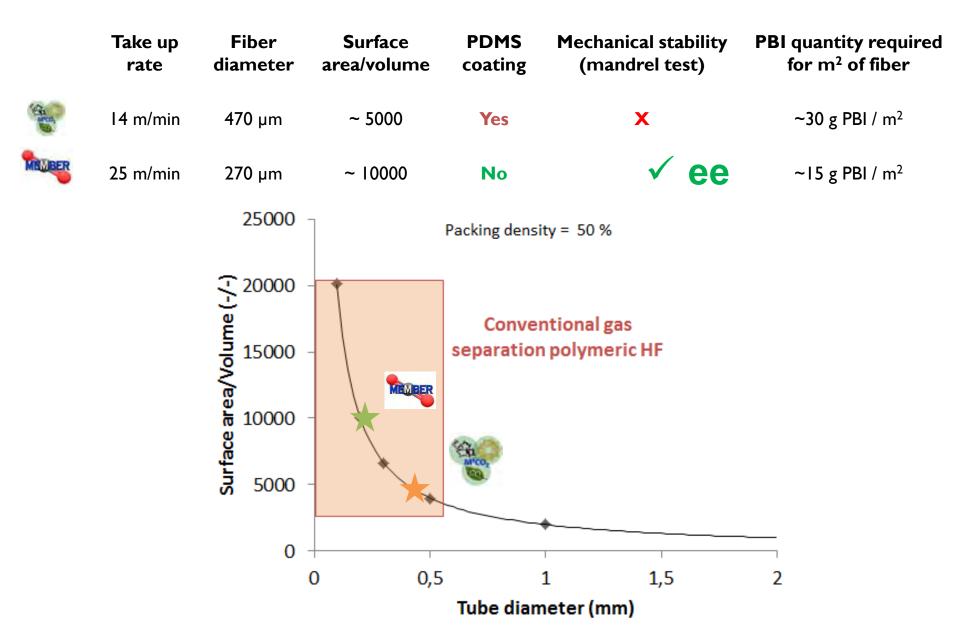
 $270 \, \mu m / 175 \, \mu m$

PBI/PVP blend fibers

Thermally stable up to ~340 °C

Hydrogen bonds between the N-H group of PBI and the C=O group of PVP

Mixed gas test (50/50 H₂/CO₂)

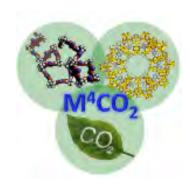

	H ₂ Permeance (GPU)	H ₂ /CO ₂ Selectivity (-)	OD/ID (μm)	Take up rate (m/min)	Defect heling treatment (PDMS)
PBI/PVP	56	16.6	275/165	25	No
10 wt% ZIF-8	121	10.2	290/175	25	Yes
5 wt% ZIF-8	31	17	270/175	25	No

Mechanical stability (Mandrel test)

M⁴CO₂ project vs MEMBER project

Conclusions

- PBI/ZIF-8 mixed matrix hollow fiber membranes:
 - ZIF-8 incorporation into the PBI polymer matrix strongly influences gas transport, specifically in mixed gas permeation
 - Improvement of fiber performance for H₂/CO₂ separation with filler addition at 150 °C is compromised at high operating feed pressures (30 bar)


- PBI/PVP blend asymmetric hollow fiber membranes
 - PVP addition: as spun fiber elasticity increases, industrially relevant take up rate values (25-50 m/min)
 - Mechanically robust and small diameter (< 300 μm) fibers have been successfully prepared
 - Blend fibers are thermally stable up to ~340 °C

Acknowledgement

This research has received funding from the European Union's Seventh Framework Programme (FP/2007-2013) under grant agreement number 608490 and Horizon 2020 research and innovation programme (H2020) under grant agreement n° 760944.

Thank you very much for your attention!

Questions

Visit our blog: http://blogs.tecnalia.com/inspiring-blog/

www.tecnalia.com

INTERNATIONAL WORKSHOP ON CO, CAPTURE AND UTILIZATION TU/E - EINDHOVEN - 16-17 FEBRUARY 2021

Session 1B (chairperson Camel Makhloufi)

- 11:15-11:35 Dr. M. Noponen and Dr. X. Sun High temperature electrolysis and co-electrolysis
- 11:35-11:55 Prof. J Serra Direct electrocatalytic conversion of CO, into chemical energy carriers in a co-ionic membrane reactor
- Dr. V. Middelkoop CO2Fokus at a glance: CO_2 utilisation focused on DME production, via 3D printed reactor and solid oxide cell based technologies
- 12:15-12:35 Dr. M. Tsampas The KEROGREEN CO₂ plasma route to CO and alternative fuels
- Dr. G. Bonura 3D-printing in catalysis: Development of efficient hybrid systems for the direct hydrogenation of CO₂ to

ORGANIZED BY

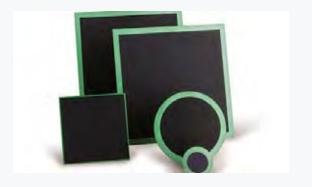
SPONSORED BY

HIGH TEMPERATURE ELECTROLYSIS AND CO-ELECTROLYSIS

Matti Noponen, Timo Lehtinen (Elcogen) Xiufu Sun (DTU)

PRESENTATION AGENDA

- Who We Are
- The Elcogen advantages
- C2FUEL project
- Acknowledgements


ELCOGEN AT A GLANCE

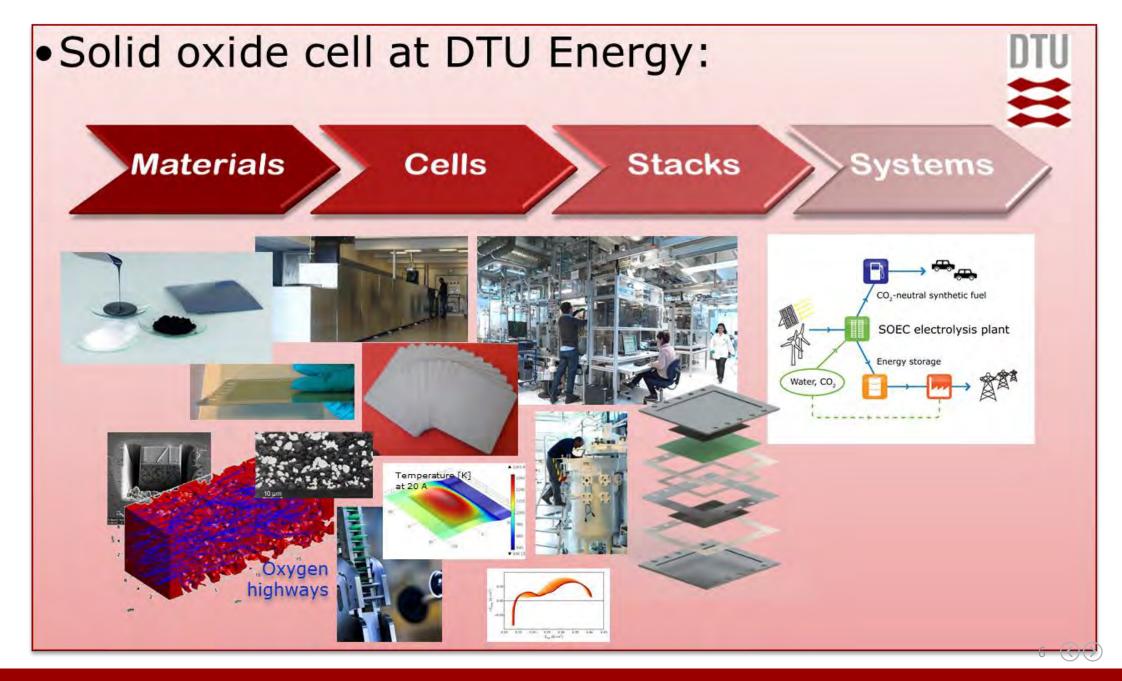
ELCOGEN PRODUCT FAMILIES

- World-leading planar, ceramic, anodesupported cells (ASC). Patent-protected
- Low operating temperature of 650°C enables longer lifetimes
- Cells and stacks made with low cost raw materials and designed for mass manufacturing
- Low cost and uniquely designed SOCs drive major cost reductions at the system level


Department of Energy Conversion and Storage – DTU ENERGY

- > Sustainable technologies for energy conversion and storage
- ➤ 230 researchers, technicians and PhD students
- ➤ Research spanning from fundamental investigations to component and prototype manufacture
- > Focus on industrial collaboration and industrially relevant processes

Solid oxide cells


Polymer exchange membrane cells

Batteries

Gas separation

Solar cells 5 (V)

SINGLE TECHNOLOGY – MULTIPLE APPLICATIONS

Residential: Single & Multi-Family

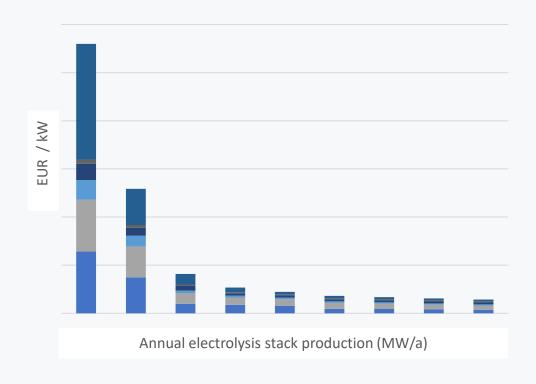
Commercial & Industrial CHP

Long-range Transportation

Electrolysers for Energy Storage and Power to Fuel

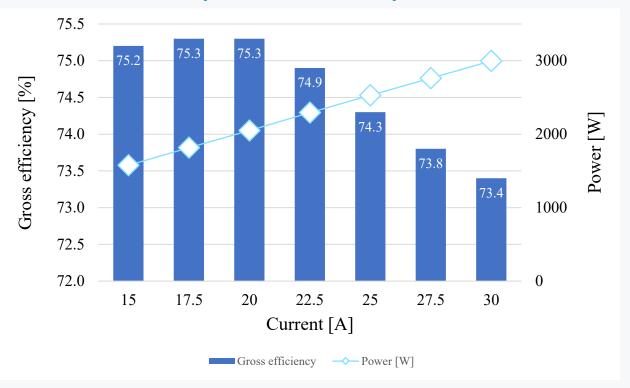
THE ELCOGEN ADVANTAGE

Elcogen is the SOC technology best positioned to address the 3 critical market barriers of Efficiency, Lifetime and Cost


Note: The targets in this chart apply to Elcogen stacks.

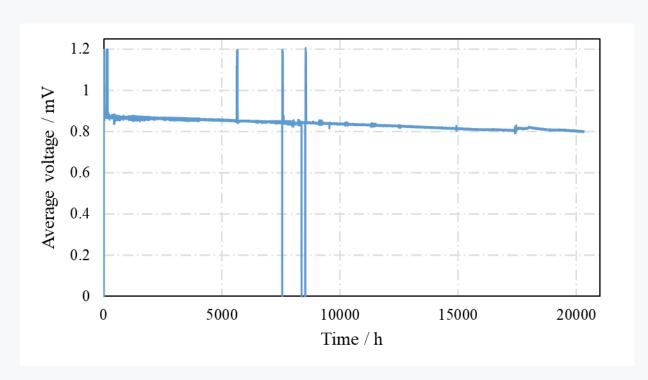
Note: ¹Elcogen's leading stack electrical efficiency of 74% (in fuel cell mode) has been measured with a 119-cell, commercial-grade 3kW stack using natural gas. ²Durability of stack design has been proven through long-term tests reaching 20,000 hours, indicating a total lifetime of 40,000 hours for the stack. ³Assumes a 1GW/year production capacity.

ELCOGEN ADVANTAGE - COST


- Elcogen's stack cost analysed closely with the manufacturing partners
- Production volume is the main driver in cost reduction
- Elcogen has started a factory project with the aim to introduce 50 MW/a production capacity

THE ELCOGEN ADVANTAGE – EFFICIENCY (FUEL CELL)

- Ultra high energy conversion efficiencies are achieved with commercial E3000 stacks
- Elcogen stacks exceed 75 % efficiencies already at 600 °C (LHV, NG)
- The efficiency is enabled by unique, patent protected unit cell and stack designs


TEST CONDITIONS

Stack inlet temperature 590 °C
Fuel Natural gas
Anode off gas recycle (sim.) 70 %
Air flow 330 NI/min

THE ELCOGEN ADVANTAGE – LIFETIME (FUEL CELL)

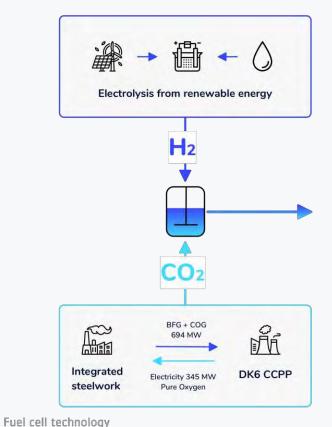
- Stack lifetime testing conducted in a real fuel cell systems
- Ongoing tests exceeding 20 000 hours
- Degradation rate linear with constant slope of 15 m Ω .cm² / 1000 h (i.e. 0.4 % / 1000 h)
- By assuming linear degradation, Elcogen stack technology has 40 000 hours lifetime expectation

TEST CONDITIONS

Stack inlet temperature	590 °C		
Fuel	Natural gas		
Fuel utilization	60 %		
Steam-to-carbon ratio	2.2		
Oxygen utilization	20 %		

A EUROPEAN RESEARCH & INNOVATION PROJECT

- This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 838014
- The project started on July 1st 2019, and will last 4 years (until 2023)
- Elcogen role is to provide high temperature steam electrolysis technology for the project (cell, stack and system)
- DTU role is to conduct cell and stack characterization and stack modelling in the project



C2FUEL OVERALL TARGET: 2.4 MILLION TCO2 AVOIDED PER

YEAR

C2FUEL Project

Overall target 2.4 million tCO₂ avoided per year

Formic acid as Hydrogen carrier

Decreasing the electricity footprint during boat charging on docks

C2FUEL Output

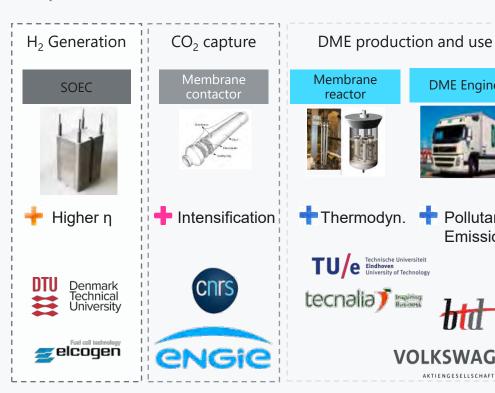
2,4 million ton of FA100 000 ton of green hydrogen1,8 TWh of green electricitySeasonal storage using 3.6 TWh of renewable electricity

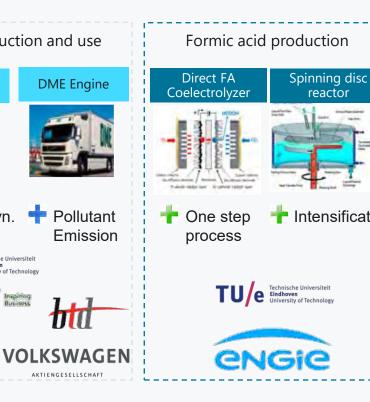
Dimethylether as Maritime and truck fuel

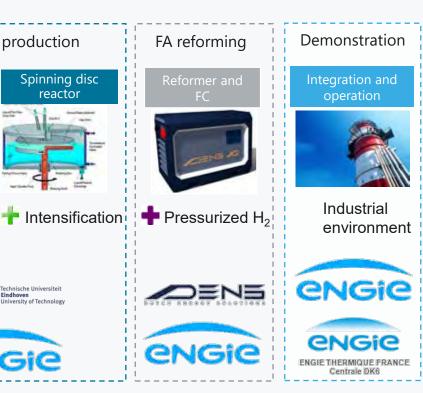
Displacing fossil fuel emission from power plant and decreasing harbor mobility footprint

C2FUEL Output

1,2 million ton of DME320 000 ton of green H₂ produced using11 TWh of renewable electricity

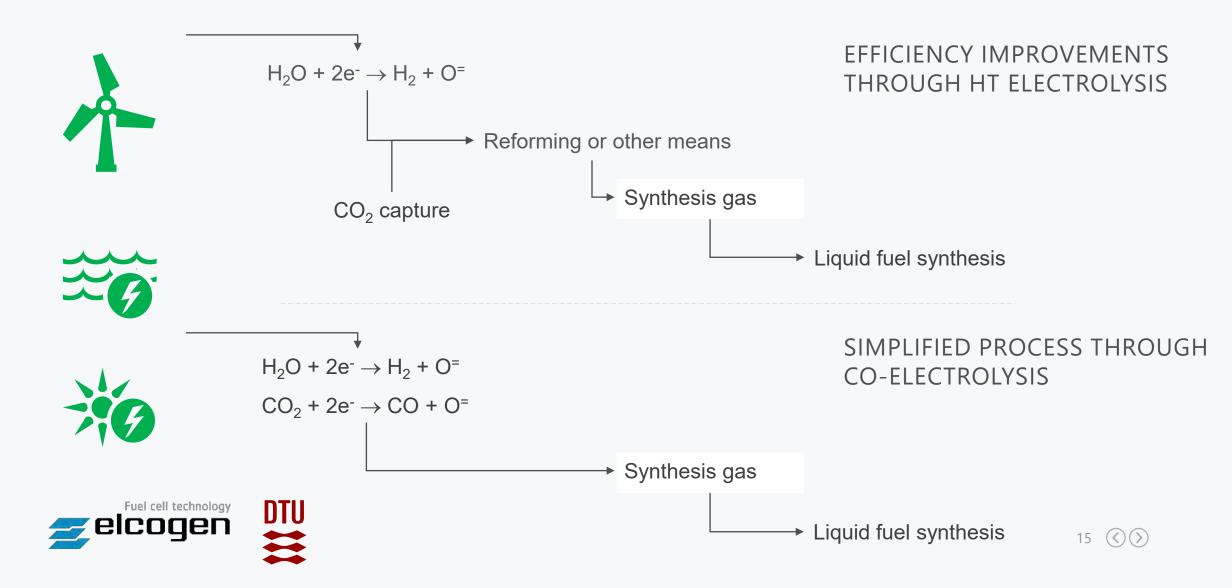


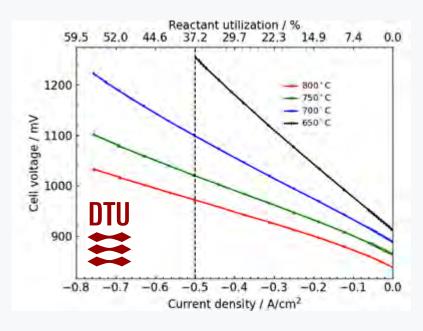

FROM TRL 3 TO TRL 6 ON INNOVATIVE TECHNOLOGIES


DME Engine

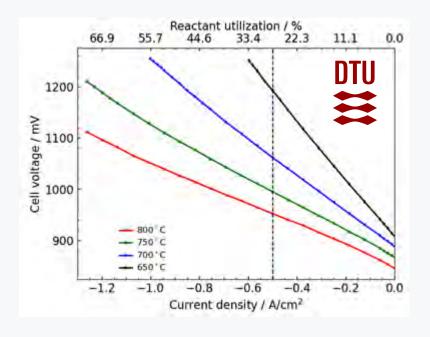
AKTIENGESELLSCHAFT

C2FUEL partnership covers the whole value chain of conversion of CO2 for carbon-captured fuel production.





STEAM ELECTROLYSIS VS CO-ELECTROLYSIS

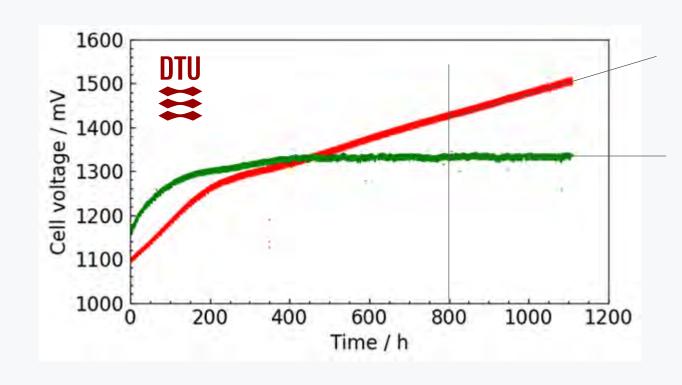


DETAILED CHARACTERIZATION OF UNIT CELLS

Steam electrolysis mode

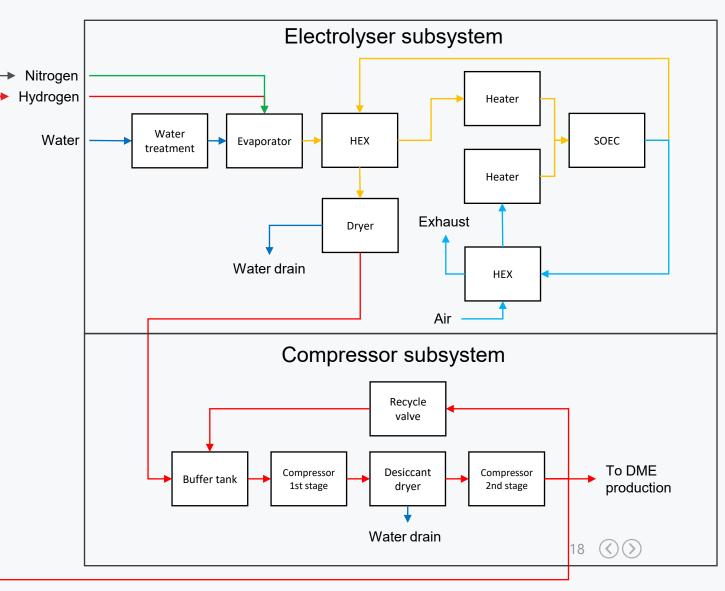
Cathode flow rate 13.4 l/h Inlet composition [H₂O, CO₂, H₂] 90 %, 0 %, 10 %

Co-electrolysis mode

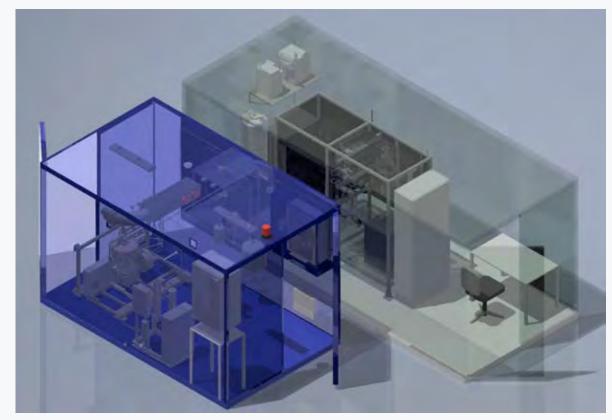

Cathode flow rate 10 l/h Inlet composition [H₂O, CO₂, H₂] 45 %, 45 %, 10 %

Specific energy consumption below 3.06 kWh/Nm³ (1.28 V) at relevant current densities Outlet composition in equilibrium determined by pressure, inlet gas composition, and temperature, current

DEGRADATION TESTING AND LIFETIME LIMITING FACTORS


- Major focus on understanding lifetime limiting factors through long term experiments
- Example shows the importance for conducting the lifetime testing at different operation conditions
 - Test with different reactant utilizations
 - Degradation rate is changed from virtually zero (1 mOhm.cm²/kh) to rapid escalation (510 mOhm.cm²/kh)

SIMPLIFIED PI-DIAGRAM OF ELECTROLYSER DEMONSTRATOR


- SOE stack operation environment aimed to be designed as mild as possible
- Pressure level in stack as close to atmospheric as possible, pressurizing through diaphragm compressor
- Flow rates with large variation window
- Heat management via multiple mechanisms
- Hydrogen circulated back to stack inlet
- Water purification process highlighted in the process

ELECTROLYSER DEMONSTRATOR

- The electrolyser unit and compression system are installed into containers
- Containers are designed modular and can be operated independently
- Electrolysis system designed to produce 1Nm³/h of atmospheric pressure hydrogen from Type I water
- Compressor container system compresses produced hydrogen to 40 bar and dries it to -60°C dew point (ref. atm. pressure) equals to ~19 ppmVOL
- Containers will be installed outdoors at the DK6 site with other bricks of the C2FUEL project demonstration system

Layouts of compressor (left) and electrolyser (right) containers

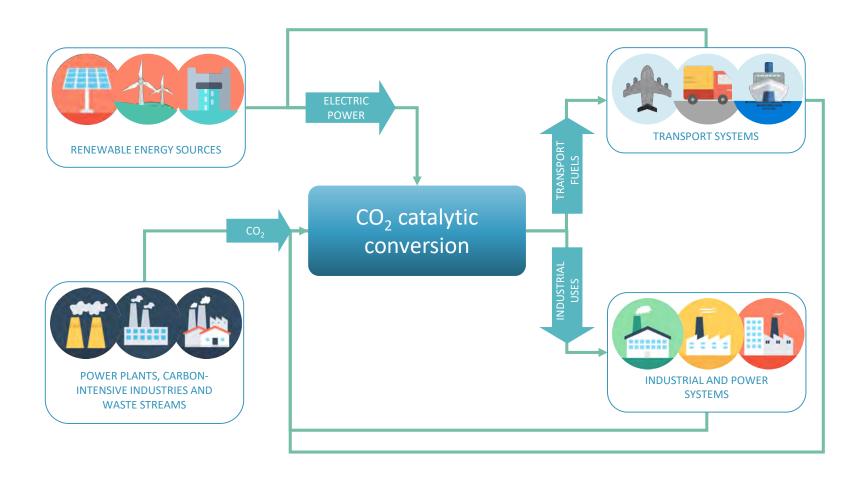
ACKNOWLEDGEMENTS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 838014.

THANK YOU FOR YOUR ATTENTION!

Direct electrocatalytic conversion of CO₂ into chemical energy carriers in a co-ionic membrane reactor

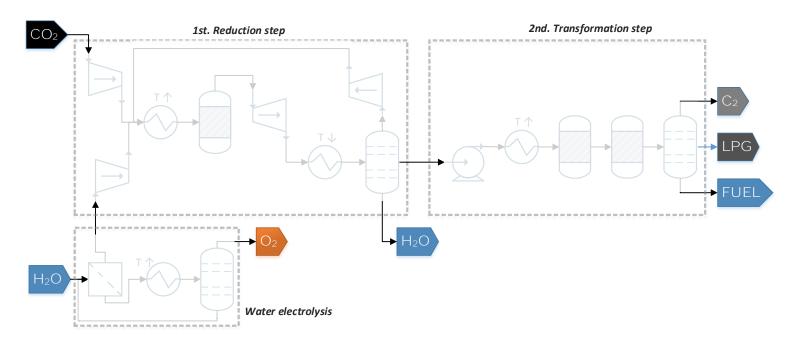
José M. Serra



This project has received European Union's Horizon 2020 research and innovation funding under grant agreement Nº 838077.

Context

CO₂ catalytic conversion combined solution for energy storage and carbon footprint reduction

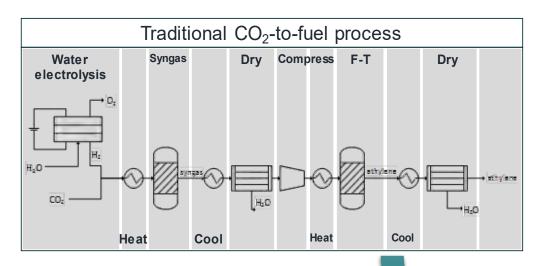


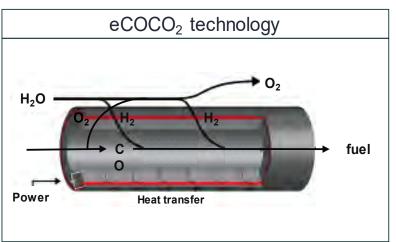
Context

Current CO₂-to-fuel technologies

Multi-step approach involves a sequence of separated processes

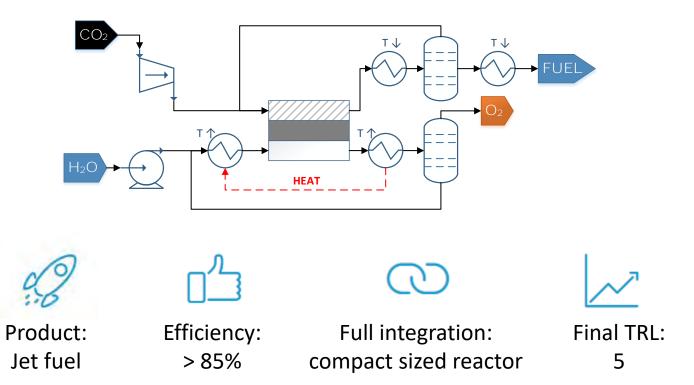
High costs
up to 300 €/ MWh CAPEX
and 750 €/MWh OPEX


Highly energy intensive with overall energy efficiency values around 60%



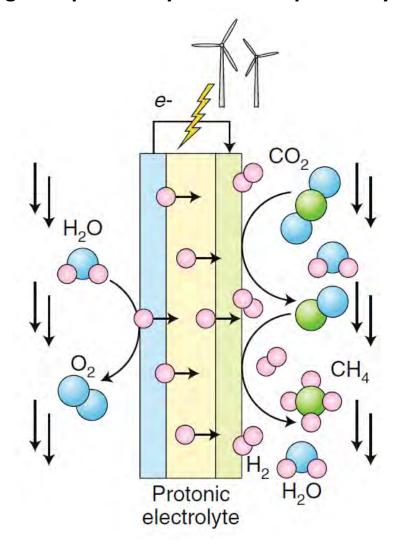
Single-step electrolysis and one-pot catalytic conversion

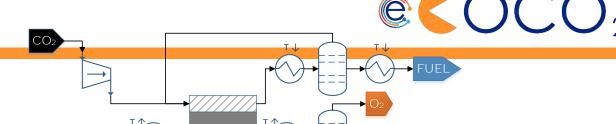
Membrane Reactor for the direct electrocatalytic conversion of CO₂ and steam into hydrocarbons


Process intensification with active ceramic membranes

Scientific background and techno-economics: Malerød-Fjeld et al., **Nature Energy 2017**, Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss, https://www.nature.com/articles/s41560-017-0029-4

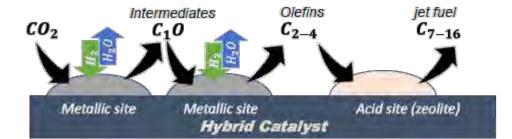
(Intensified) Single-step electrolysis and one-pot catalytic conversion




Set-up a technology for conversion of CO₂, using renewable electricity and water steam, to carbon-neutral jet fuel, at high energy efficiency, very high CO₂ conversion rate and moderate-to-low cost.

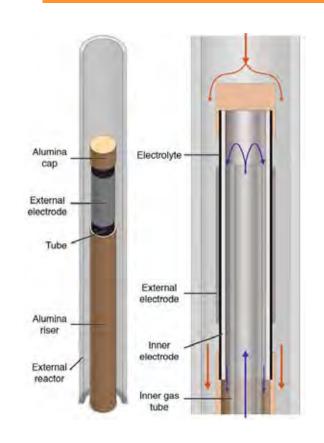
Single-step electrolysis and one-pot catalytic conversion

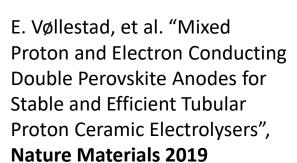
Concepts behind the intensification

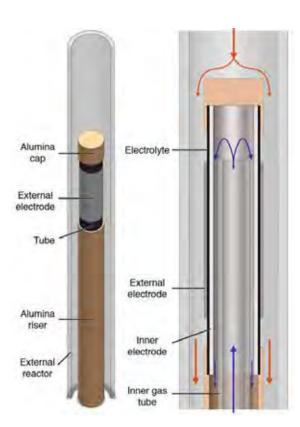

Enabling Components

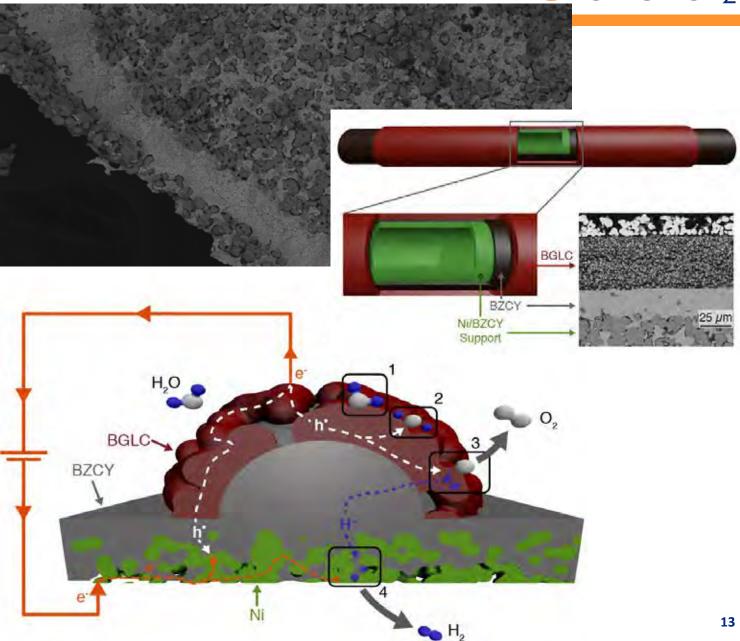
Compact EC-reactor

- Shifting the **equilibrium** by removing the H₂O formed in the CO₂ hydrogenation
 - Avoid the effect of high pH_2O in kinetics and catalyst degradation (e.g. zeolite) at high X_{CO2} Electrolyte
- Control of pH_2 along the reactor favors conversion to target products
- Sequential catalytic reactions: RWGS + Intermediate formation + target hydrocarbons

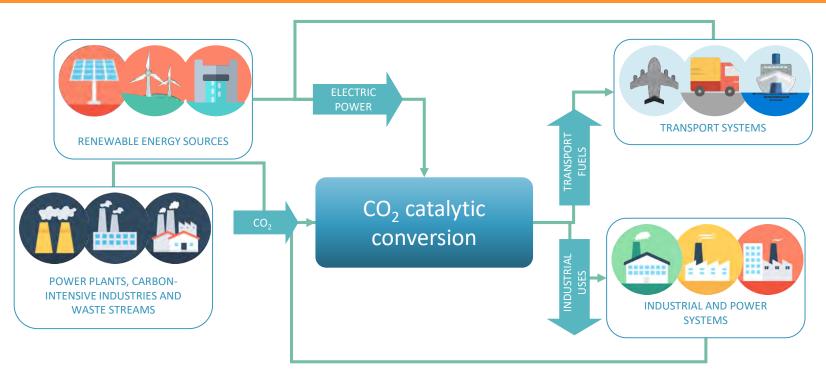

Hybrid Catalyst



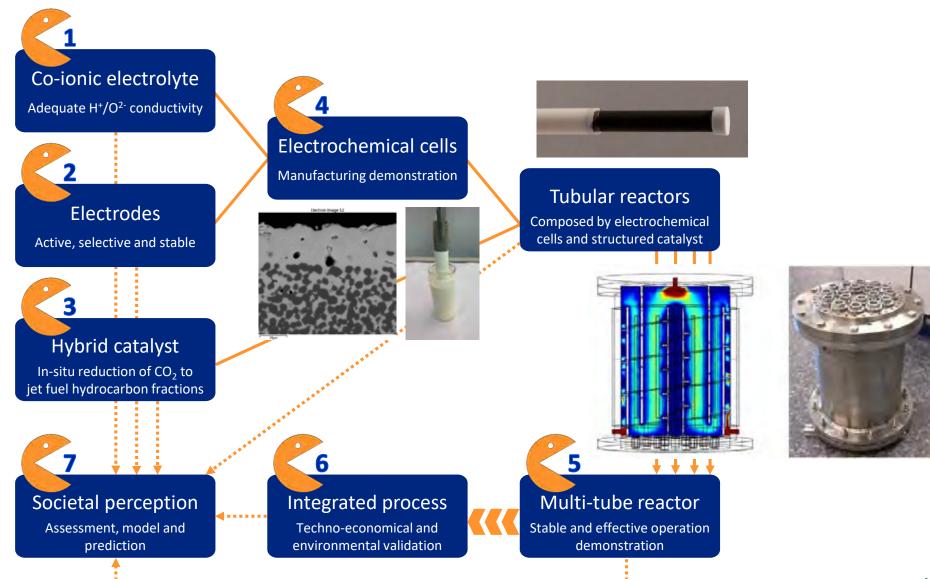




Reference cells


E. Vøllestad, et al. "Mixed Proton and Electron Conducting Double Perovskite Anodes for Stable and Efficient Tubular Proton Ceramic Electrolysers", Nature Materials 2019

Context


Challenges

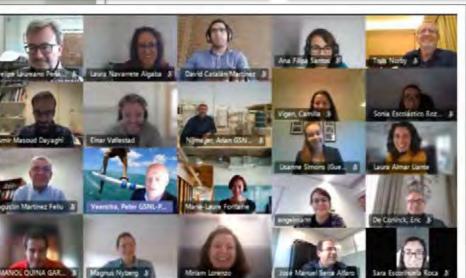
- Couple Catalysis and Electrochemical Cell operation conditions
- Manufacture of large cells with novel components
- CO₂ streams: composition, conditions, capture&cleaning costs...
- Integration in industrial processes: TEA
- Social perception and acceptance

Objectives

Partners

The consortium is formed by well balance of reference research and academic institutions:

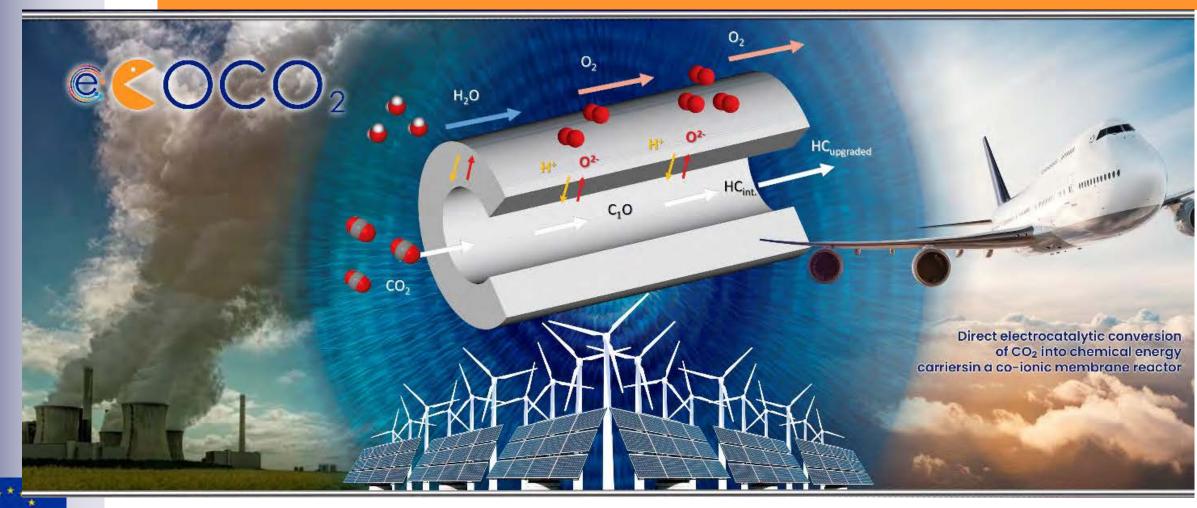
and leader companies:


Teams

Equal opportunities between men and women in the implementation of the action are promoted. Gender balance at all levels of personnel assigned to the action, including at supervisory and managerial level.

5 Women WP Leaders

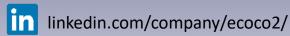
Barriers

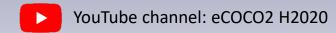

- Economic sustainability of the process
 - Associated costs, including capital costs and operating costs (mainly energy consumption), and the expected savings and revenues.
- Dependence on upstream technologies
- Availability of required associated infrastructure
- Public perception and acceptance of the technology
- Regulatory barriers

Dissemination and Communication

- ✓ Social networks
- ✓ Visual identity

- ✓ Press release and radio
- **✓** Project flyer
- ✓ Project video





INTERNATIONAL WORKSHOP ON CO2 CAPTURE AND UTILISATION

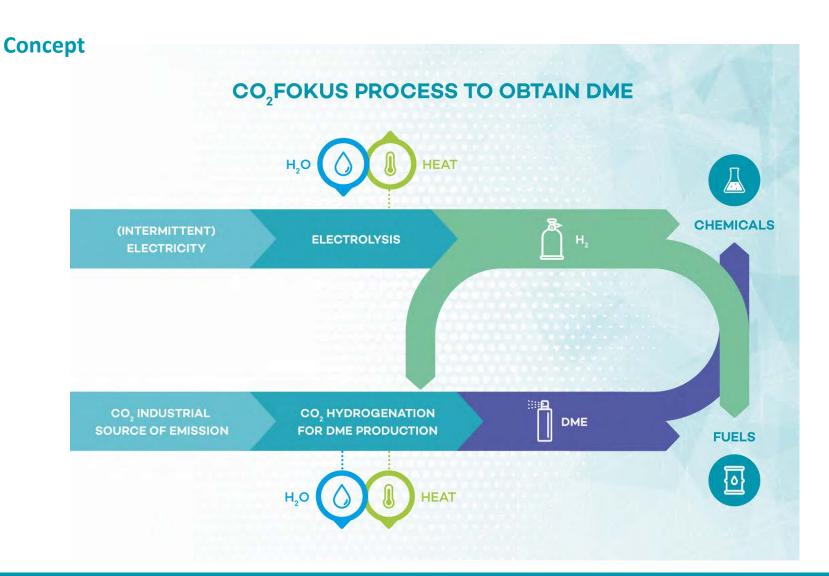
CO₂ utilisation focused on market relevant dimethyl ether production, via 3D printed reactor and solid oxide cell based technologies

> Vesna Middelkoop **16 February 2021**

42 MONTHS

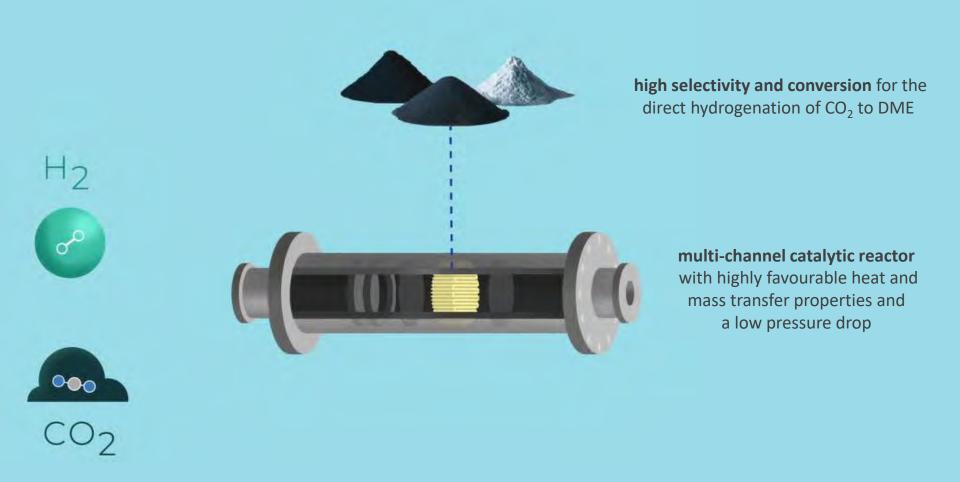
2019/07/01 STARTING DATE

8 COUNTRIES


CO₂Fokus at a glance

The project will develop a cutting-edge technology to directly convert industrial CO2 into DME (Dimethyl Ether), by:

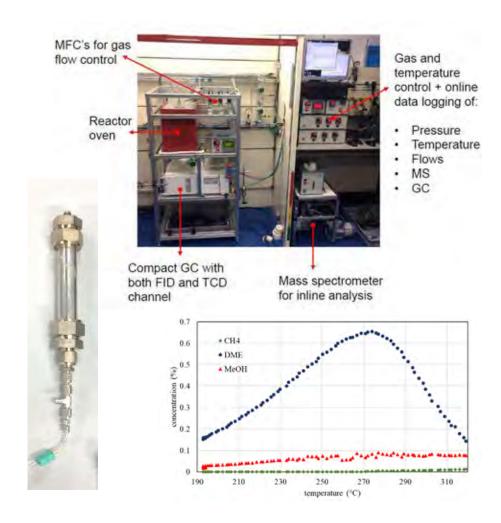
- employing innovative 3D printed multichannel catalytic reactors and solid oxide electrolyser cells
- integrating and testing them in an industrial environment of large industrial CO2 point sources



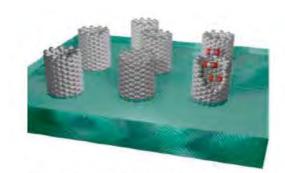
www.co2fokus.eu 3 info@co2fokus.eu

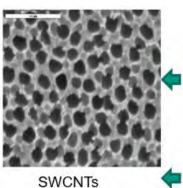
Catalyst formulation and single tube catalyst screening for DME production

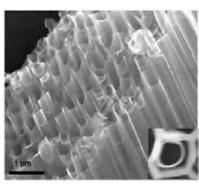
www.co2fokus.eu 5 info@co2fokus.eu



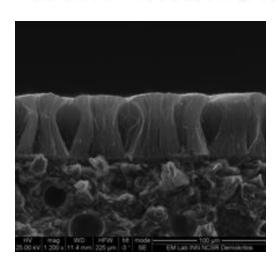
Catalyst formulation and single tube catalyst screening for DME production

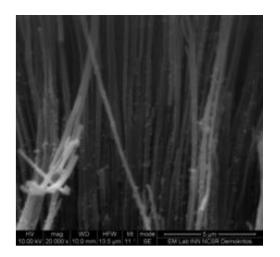


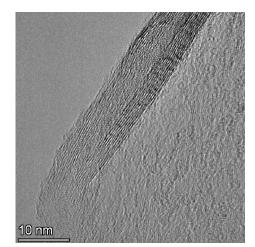




Single tube catalytic CNT membrane reactors for DME production

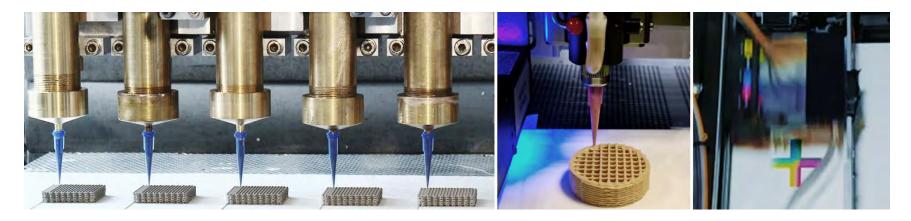



Aligned Carbon Nanotube (ACNT)s:



parallel catalytic nanoreactors

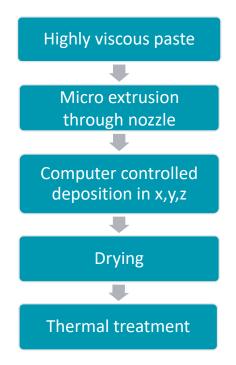
Tailored nano pore size by Atomic Layer Deposition (ALD)


www.co2fokus.eu info@co2fokus.eu

Why do 3D printing of catalysts and adsorbents?

Major advantages of 'direct write' (structuring reactors into multi-channel, multi-layer architectures) is that tailor-made multi-modal devices allow for:

- precise and uniform distribution of active material over a high surface area
- highly adaptable and well-controlled design for optimal flow pathways
- low pressure drop
- · improved mass- and heat-transfer
- easy (in-situ) regeneration and cost-effective product removal
- overall greatly improved productivity per cubic meter of reactor volume


www.co2fokus.eu 8 info@co2fokus.eu

3D printing process - 'direct write'

Offers bespoke patterning of all-in-one structures in a variety of materials:

- oxide ceramics (e.g. Al₂O₃, SiO₂, ZrO₂, CeO₂, mixed metal oxides, nanocomposites)
- metals (e.g. titanium, copper, aluminium, silver) and alloys (e.g. stainless steel)
- non-oxide ceramics (e.g. silicon carbide, carbon, boron nitrate)
- other functional materials: zeolites, polymers, MOFs, graphene oxide

3D printed catalyst, adsorbents and reactor components at a glance

3D printed catalyst for DME production in CO2Fokus

CZA as-prepared

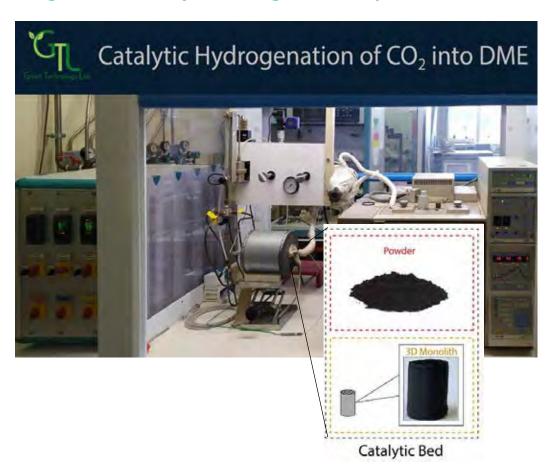
mixing the printing paste

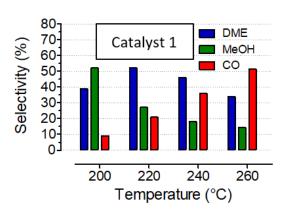
calcination

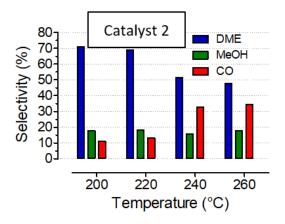
CZA calcined

optimising the printing model

varying design and size


integration into the reactor





Single tube catalyst testing for DME production

For more details see further: Session 1B, Dr. G. Bonura 3D-printing in catalysis: Development of efficient hybrid systems for the direct hydrogenation of CO₂ to DME

www.co2fokus.eu 12 info@co2fokus.eu

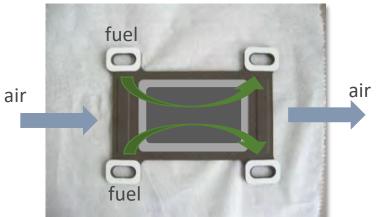
Multi-channel millireactors TRL4-TRL6

Characteristics required of the reactor:

- Improve the mass transference
- Optimisation of heat dissipation
- Dimensional uniformity of the tubes
 - Thermal and mechanical stability
 - Ease of handling

16 Millichannel Reactor				
Space velocity,	T, ℃	CO2 Conversion,	DME Selectivity,	DME
$NL/kg_{cat}/h$		%	%	Yield, %
	280	12.1	31.0	3.7

For more details see further: Session 3A, Dr. S. Perez Process intensification in the conversion of CO2 with a milli-structured reactor



Solid oxide electrolyser cell and design, development and build up for H2 production

cell design

- Thin (ca. 250 μm) anode support with GDC/LSCF cathode
- Low cost state-of-the-art materials
- High mechanical strength and reliability

performances	unit	nominal
Conversion	%	60
H ₂ Production	NI	0.30-0.32
Stack power DC	kW	4.5
Thermal cycling	-	100-200

Process design of CO2Fokus prototype demonstration units and on site integration

Key Performance Indicators (KPI)	State-of- the-art	CO2Fokus
Energy efficiency (MJ/ton) DME	2300#	20-30% reduction
Catalyst & reactor design	TRL 3-4	TRL 6
Catalyst durability (hrs)	10 ²	10 ³
Pressure (bar)	30-70	30
Temperature (°C)	280	250
CO ₂ /H ₂ feed (N L/h)	33/100	500/1500 or larger by numbering tubes
DME yield (%)	20-25	>30 (multichannel reactor)
CO ₂ conversion (%)	30	>30
Overall H ₂ conversion (%)	50	50

Reactor and SOE units will be integrated into existing carbonintensive industrial facilities for on-site recycling of CO₂

Conclusions

Advance beyond the state-of-the-art

- Effective controlled deposition of active catalyst particles
- Reactor design: large surface to volume ratio and controlled macrostructure;
 millichannel reactors offer enhanced mass and heat transfer and 10-20% increase in reaction performance
- Integration and operation at Petkim's facilities industrial CO₂ point source

Technical acceptance enablers

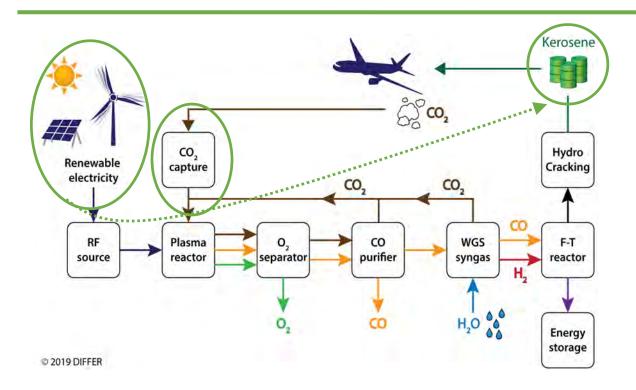
- Tackle potential technological and industries' concerns
- Provide technical guidelines for companies based on CO2Fokus demo design
- Tasks are put in place to provide analysis of environmental, financial and regulatory requirements
- Join forces with other projects on common interest topics to amplify the impact of our activities

Thank you!

This document reflects only the authors' view and the Innovation and Networks Executive Agency (INEA) and the European Commission are not responsible for any use that may be made of the information it contains.

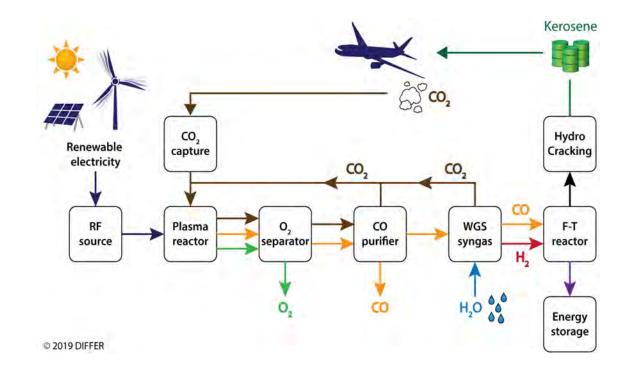
Production of Sustainable aircraft grade Kerosene from water and air powered by Renewable Electricity, through the splitting of CO₂, syngas formation and Fischer - Tropsch synthesis

The KEROGREEN CO₂ plasma route to CO and alternative fuels


A. Pandiyan, S. Welzel, A. Goede, M.C.M. van de Sanden, M.N. Tsampas

DUTCH INSTITUTE FOR FUNDAMENTAL ENERGY RESEARCH, EINDHOVEN, THE NETHERLANDS

Kerogreen project


Kerogreen aim: Demonstation of the full chain process from renewable electricity, CO₂ (captured) and H₂O to kerosene.

- Research and optimization of individual process steps TRL (1-3) → 4
- Integration phase at Karlsruhe Institute of Technology → 3 L per day
- Duration 2018-2022

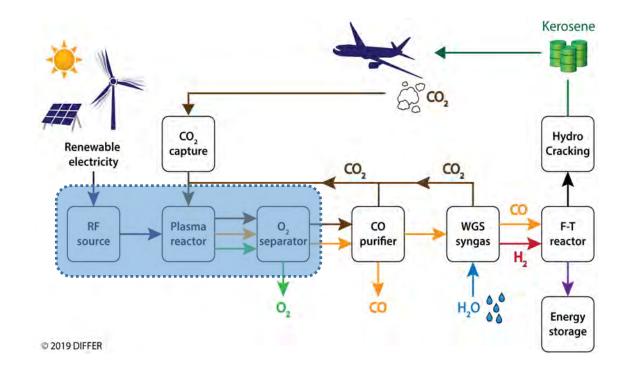
Kerogreen project

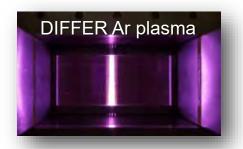
KEROGREEN offers an innovative conversion route based on:

- CO₂ plasmolysis (DIFFER)
- Electrochemical O₂ separation (DIFFER, VITO, Cerpotech, Hygear)
- CO purification (HYGEAR)
- Water gas shift reaction reaction (KIT)
- Fischer-Tropsch synthesis (INERATEC)
- Heavy HC hydrocracking (KIT)

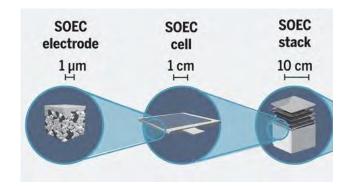
Main challenges

- Oxygen separation after plasmolysis by SOEC
- System integration of different technologies into one container sized assembly
- Maximization of the energy and carbon efficiency of the full chain


INERATEC

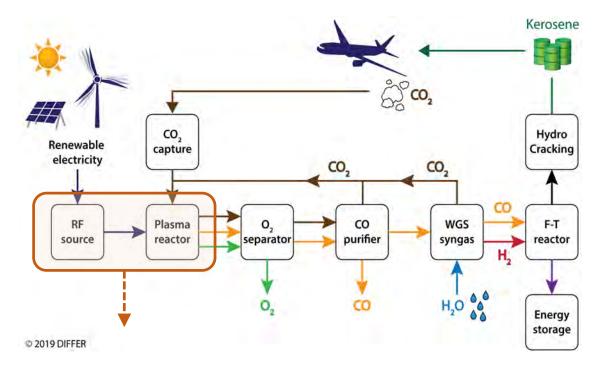


Kerogreen project



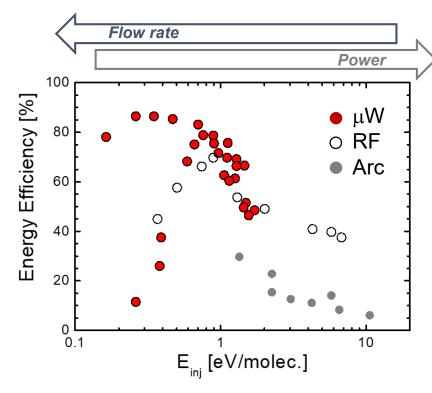
DIFFER involvement

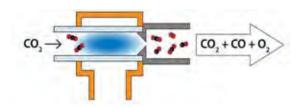
- Plasmolysis
 - Plasma modeling and optimization
 - Upscaling from 1 to 6 kW
- Electrochemical oxygen separation
 - Proof of concept
 - SOEC material requirements
 - Upscaling from 1W to 1.5 kW


SOEC: Solid oxide electrolyte cells

DOI: 10.1126/science.aba6118

Why CO₂ plasmolysis?





CO₂ plasmolysis: 2CO₂ → 2CO +O₂

- Input: CO₂ + renewable electricity
- Output: CO₂, CO and O₂
- High energy efficiency, ...
- Main challenge O₂ separation


DOI: 10.1017/CBO9780511546075

SOEC as oxygen separator

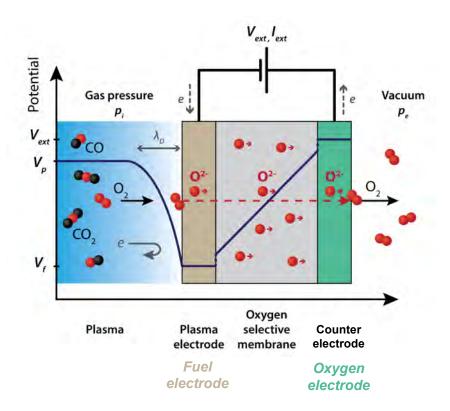
Potential Gas pressure Vacuum V_{ext} CO Vp V, Oxygen Plasma Plasma selective Counter electrode electrode membrane Fuel Oxygen electrode electrode

 V_{ext} , I_{ext}

Conceptual design of plasma integrated SOEC

O₂ separation

- Difficult process
- Lack of literature
- SOEC: Electrochemical O₂ pumping



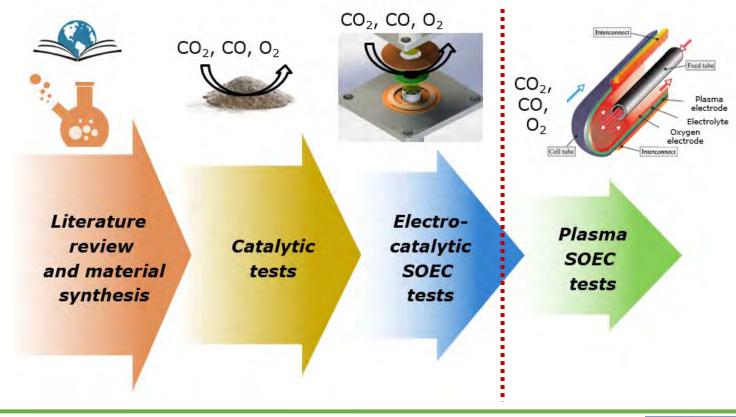
SOEC as oxygen separator

Material functionalities

- For both electrodes:
 - Mixed electronic & ionic conductivity
 - Low overpotential losses
- Electrolyte
 - Oxygen ion conductivity
 - Low resistance → thin
- Key performance indicators
 - High oxygen fluxes
 - Stability
- Plasma (or fuel) electrode
 - Unconventional mixture (CO₂, CO, O₂)
 - Low CO oxidation activity

Conceptual design of plasma integrated SOEC

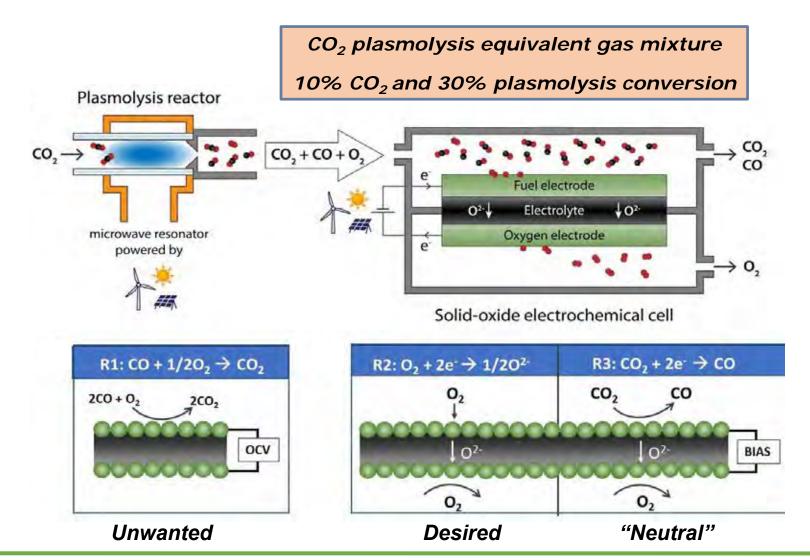
Material screening



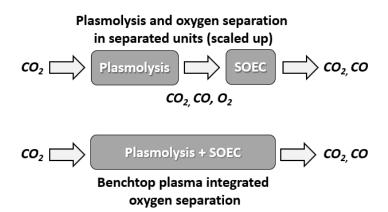
Plasma electrode development

- Literature review (redox properties)
- Material synthesis (Cerpotech)
- Catalytic tests

Testing


- SOEC electrocatalytic tests
- Plasma SOEC integrated tests

SOEC testing: Possible reactions



Summary and outlook

Summary

- Oxygen separation from CO₂ plasmolysis equivalent mixtures has been demonstrated.
- Lowering operating temperature decreases CO oxidation losses but also oxygen separation.
- SOEC operation with CO₂ plasmolysis equivalent mixtures improves materials stability.

Outlook for integration phase

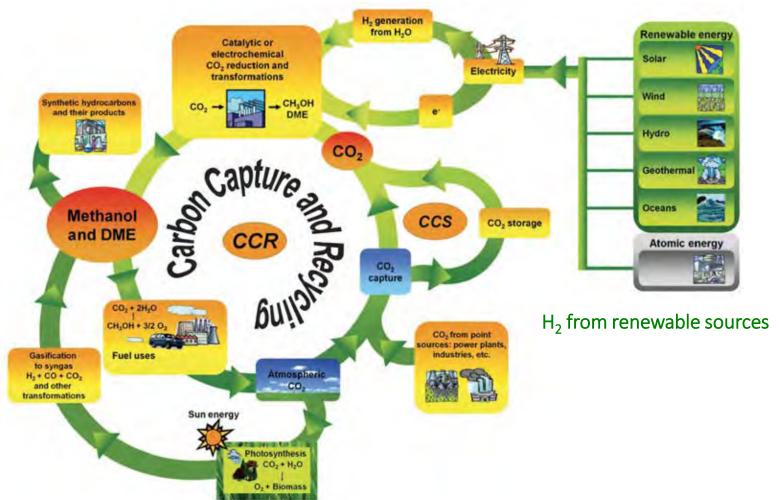
- Advance SOFC architectures will decreased ohmic losses:
 - allow operation at lower T (less CO losses),
 - while achieving high oxygen pumping rates.
- Integrated phase: Commercial vendor → 1.5 kW unit
- DIFFER studies: CO₂ plasma-integrated SOEC.

CO₂ utilisation focused on market relevant dimethyl ether production, via 3D printed reactor- and solid oxide cell based technologies

3D-printing in catalysis: Development of efficient hybrid systems for the direct hydrogenation of CO₂ to DME

INTERNATIONAL WORKSHOP ON CO₂ CAPTURE AND UTILISATION

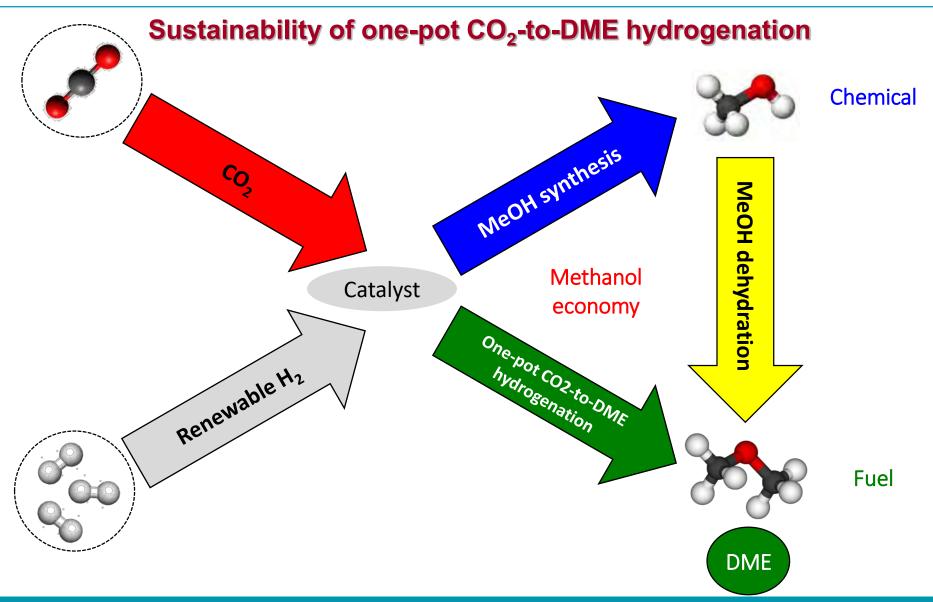
Giuseppe Bonura 16 February 2021


Overview

- Carbon Capture and Recycling
- DME: a multipurpose chemical & a fuel
- Conventional two-step processes
- Integrated one-step hydrogenation CO₂-to-DME
- 3D catalysis: a step forward
- Catalytic results
- Rationalization of the catalytic behaviour
- Conclusions

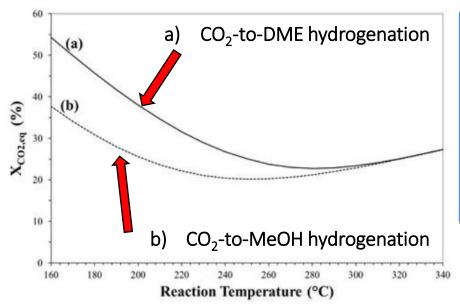
www.co2fokus.eu 2 info@co2fokus.eu

CO₂ as a substitute for toxic CO, derived from fossil carbon

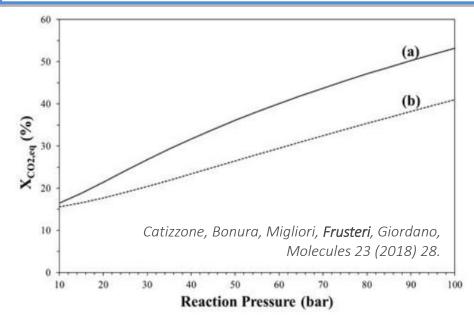


Olah et al.// Chem. Soc. Rev. 43 (2014) 7995

www.co2fokus.eu info@co2fokus.eu



www.co2fokus.eu 4 info@co2fokus.eu

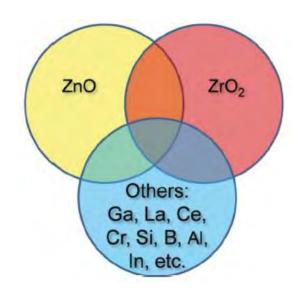


Thermodynamics of CO₂ hydrogenation

Due to methanol consumption by dehydration reaction, the one-step process is more efficient than the two-step process, with a main benefit at low temperature and high pressure.

$CO_2 + 3H_2 \Leftrightarrow CH_3OH + H_2O$	$\Delta \tilde{H}_{R}^{o} = -49.4 \text{kJ} \cdot \left(\text{mol}_{\text{MetOH}} \right)^{-1}$
$CO_2 + H_2 \Leftrightarrow CO + H_2O$	$\Delta \tilde{H}_{R}^{o} = +41.2 \text{kJ} \cdot \left(\text{mol}\right)^{-1}$
2CH ₃ OH ⇔ CH ₃ OCH ₃ + H ₂ O	$\Delta \tilde{H}_{R}^{o} = -24kJ \cdot \left(mol_{DME}\right)^{-1}$
CO+2H ₂ ⇔ CH ₃ OH	$\Delta \tilde{H}_{R}^{o} = -90kJ \cdot \left(mol_{MetOH}\right)^{-1}$
$2CO_2 + 6H_2 \Leftrightarrow CH_3OCH_3 + 3H_2O$	$\Delta \tilde{H}_{R}^{\circ} = -122kJ \cdot \left(mol_{DME}\right)^{-1}$

Conventional two-step processes

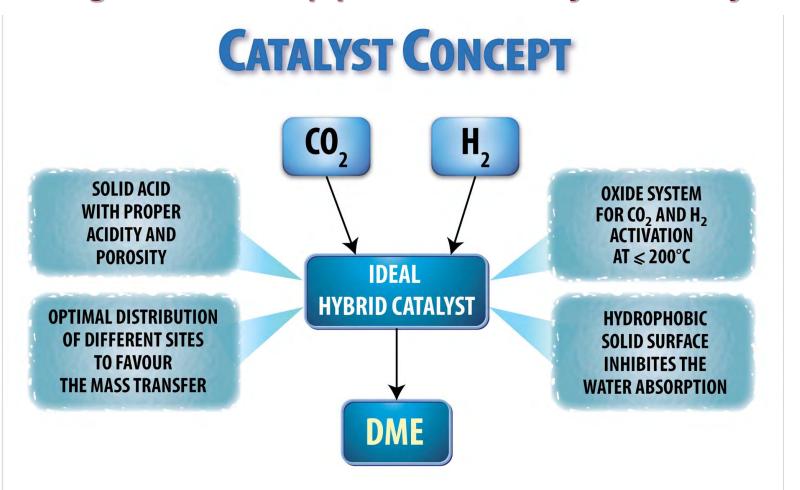

1. Methanol synthesis from syngas

Cu-based catalysts (high activity and selectivity)

- Catalyst composition
 - a) Support \Rightarrow High SA_{BET} Cu⁺ stabilization
 - a) Promoter ⇒ High MSA_{Cu} and D (%)
 High Poisoning resistance
- Catalyst preparation
 - Co-precipitation [Jingfa et al., 1996]
 - Sol-Gel [Köppel et al., 1998]
 - Incipient-Wetness [Toyir et al., 2001]
 - Combustion [Arena et al., 2004]
 - Reverse coprecipitation under ultrasounds [Arena et al., 2007]
 - Gel-oxalate coprecipitation [Bonura et al., 2014]

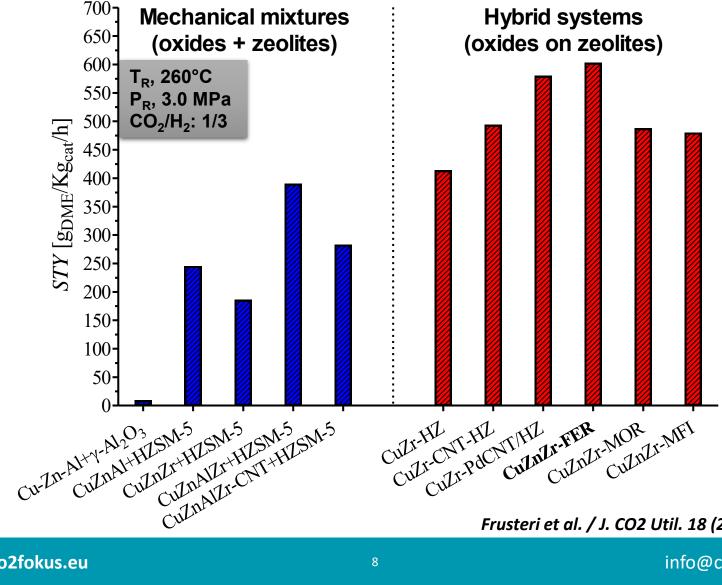
2. Dehydration of methanol

γ-Al₂O₃, zeolites, heteropolyacids, ...


OPEN ISSUES

- a) Metal/Support interaction
- b) Metallic Dispersion
- c) "Water Poisoning"
- d) REACTION MECHANISM

Integrated one-step process: new hybrid catalysts

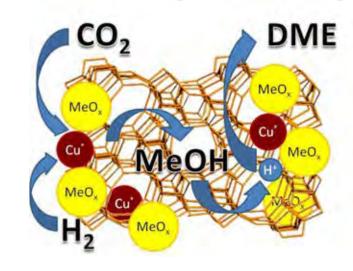

Frusteri *et al.* // *Catal. Today* 277 (2016) 48–54. Frusteri *et al.* //*Catal. Today* 281 (2017) 337–344.

www.co2fokus.eu 7 info@co2fokus.eu

Mechanical Mixtures vs. Single Grain Hybrid Systems

Frusteri et al. / J. CO2 Util. 18 (2017) 353-361

www.co2fokus.eu info@co2fokus.eu



Integrated one-step process: new 3D hybrid catalysts

Preparation of 3D hybrid catalysts with reproducible properties at long radius

Combination of metal/oxide(s) and acidic functionalities in a single solid system

The parent catalysts are not distinguishable anymore

3D printing (VITO)

Coprecipitation of metal precursors by oxalic acid in a slurry solution containing a finely dispersed zeolite / binder paste / printing / drying / calcination

Not only uniform distribution... exposure *vs.* accessibility of surface sites

- > Reproducibility
- > Properties controlled
 - Texture
 - Structure
 - Morphology
 - Surface

www.co2fokus.eu 9 info@co2fokus.eu

Experimental setup

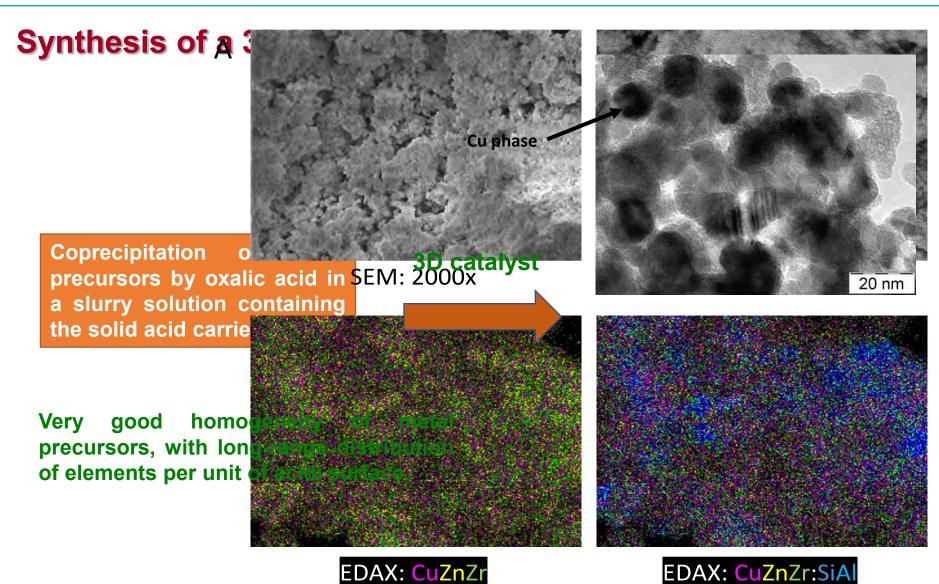
CO₂-to-DME hydrogenation

Reactor id: 4.0 mm

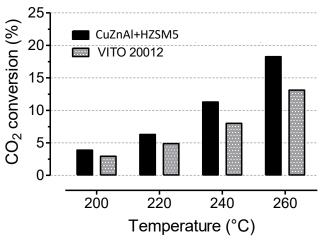
 $wt_{cat} = 0.25 g$

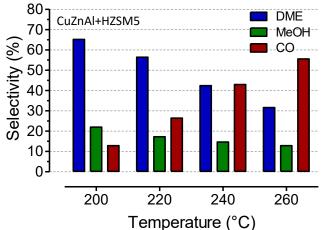
 H_2 : CO_2 : N_2 = 69:23:8

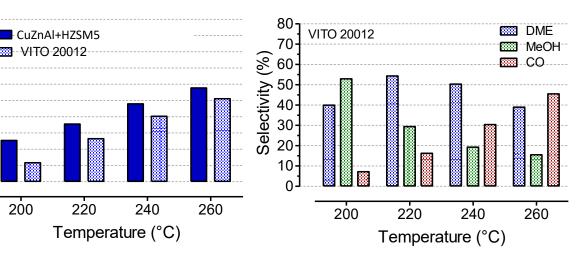
 \overline{GHSV} : 8,800 $mI_n/g_{cat}/h$


 P_R =30 bar

T_R=200-260 °C


10


DME yield (%)


9

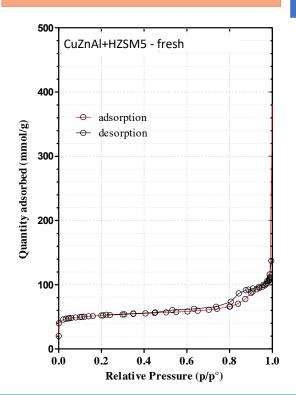
Conventional powdered vs. 3D printed catalysts (VITO)

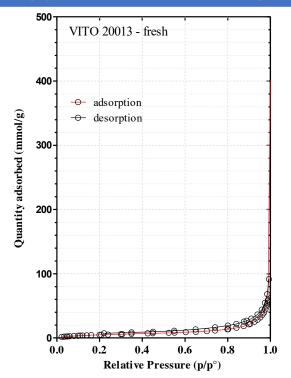
Conventional catalyst exhibits a better performance than the 3D printed crushed monolith

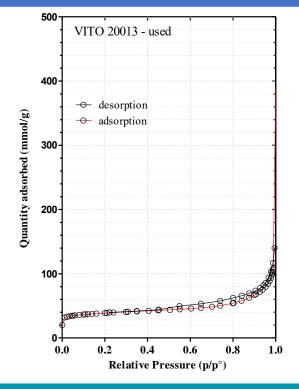
20012

Selectivity pattern quite different between conventional and 3D catalyst

www.co2fokus.eu 12 info@co2fokus.eu

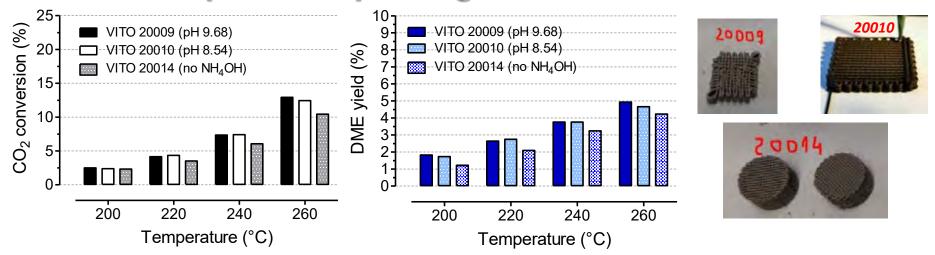


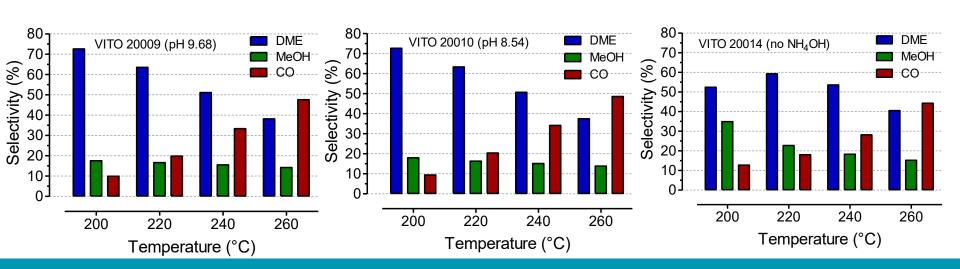

Textural properties


A lower activity of the 3D catalysts is mainly ascribable dramatic loss of microporosity during printing

SAMPLE	SA _{Lang} (m ² /g) (a)	PV (cm ³ /g) (b)	MV (cm ³ /g)	APD (Å) (d)	
CZA+HZSM5 - fresh	233.3±1.5	0.146	0.081	25	
VITO 20013 - fresh	30.5±1.2	0.140	0.008	184	
VITO 20013 - used*	175.6±1.5	0.173	0.060	39	
*Sample recovered after run at 30 bar and 260 °C, upon cooling at r.t. (a) Surface area determined according to the Langmuir model					

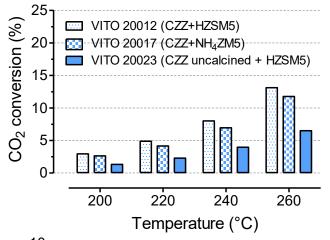
- (b) BJH desorption cumulative pore volume
- (c) Micropore volume from Horvath-Kawazoe at relative pressure ≈ 0.2
- (d) Average pore diameter determined from the geometrical formula: 4PV/SA





Influence of pH on 3D printing

The preparation of the paste for 3D printing benefits from a higher pH



Influence of pre-calcination of the phases:

VITO 20012 (precalcined phases before printing) vs. VITO 20017 (CZZ+ NH₄ZSM-5, co-catalyst not calcined) vs.

VITO 20023 (CZZ uncalcined + HZSM-5)

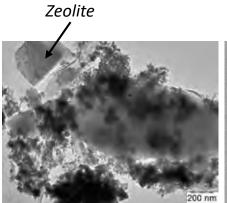
Temperature (°C)

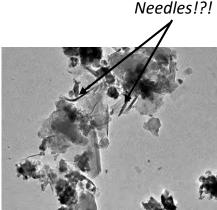
10
9
VITO 20012 (CZZ+HZSM5)

VITO 20017 (CZZ+NH₄ZM5)

VITO 20023 (CZZ uncalcined + HZSM5)

VITO 20023 (CZZ uncalcined + HZSM5)


200
220
240
260


Temperature (°C)

- 1. On VITO 20017, printing before stabilization of the zeolite phase prevents the shift of equilibrium as the result of a significant inhibition or reduction of acid sites (NH₃-TPD !), not available/activable anymore even after further calcination.
- 2. On VITO 20023, the activation of CO₂ is significantly depressed on a poor stabilized Cu phase (XRD!), demonstrating as the extent of metal-oxide interface during preparation/calcination is crucial for addressing catalytic behaviour.

20017

VITO 20017 – TEM images on the fresh sample (calcined at ITAE @ 500 °C)

www.co2fokus.eu 15 info@co2fokus.eu

Key messages

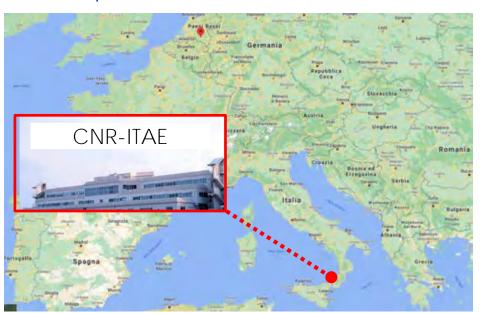
- □ The development of a catalytic process for the direct conversion of CO₂ to DME with 3D hybrid systems is feasible.
- Very promising results were obtained using 3D hybrid system consisting of a mixed oxide phase supported on an acidic preformed carrier.
- □ 3D printing before stabilization of the acid phase prevents the shift of equilibrium as the result of a significant inhibition or reduction of acid sites, not available/activable anymore even after further calcination.
- □ 3D printing before calcination of methanol phase showed that the activation of CO₂ is significantly depressed on a poor stabilized metal phase, confirming as the extent of metal-oxide interface during preparation/calcination is crucial for addressing catalytic behaviour.
- High selectivity to DME can be achieved at reaction temperature lower than 250 °C and the current limit is related to CO₂ activation.

Open Issues

- Novel active phase suitable to activate CO₂ at low temperature taking a direct advantage on DME selectivity (see thermodynamics)
- New binders for a full control of texture/structure/surface properties
- Innovative stacked and alternating 3D reactors for increasing DME productivity from CO₂ hydrogenation in one step
- Optimization of catalyst stability and regeneration

www.co2fokus.eu 17 info@co2fokus.eu

Acknowledgements


■ EU H2020 - Grant agreement N. 838061 - CO2Fokus

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

http://www.itae.cnr.it

Dr. Francesco FRUSTERI Dr. Catia CANNILLA

Dr. Giuseppe BONURA

Dr. Serena TODARO

Mr. Aldo MEZZAPICA

Dr. Leone FRUSTERI

www.co2fokus.eu 18 info@co2fokus.eu

Thank you!

This document reflects only the authors' view and the Innovation and Networks Executive Agency (INEA) and the European Commission are not responsible for any use that may be made of the information it contains.

INTERNATIONAL WORKSHOP ON CO, CAPTURE AND UTILIZATION TU/E - EINDHOVEN - 16-17 FEBRUARY 2021

Plenary session (chairperson Fausto Gallucci)

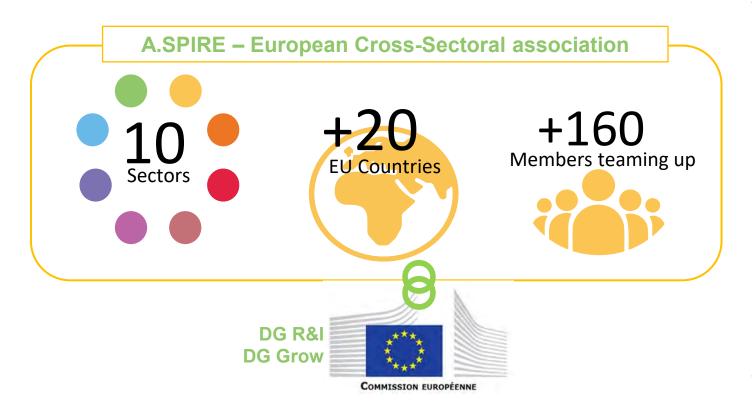
14:00-15:00 Dr. Angels Orduna (Spire 2030)

ORGANIZED BY

SPONSORED BY

Processes4Planet

Transforming the European Process Industry for a sustainable planet & a prosperous society



WHO ARE WE

A vibrant community ...

OPEN APPROACH: inclusive of different stakeholders and welcoming Newcomers

Industrial Associations & Clusters
Industries, incl SME's, New Sectors ...

RTO's & Higher Education Institutions

Consultancies, NGO's, KIC's, Innovation Agencies,

MS & Regional Representatives
Financial Partners

PROCESS INDUSTRY: INDISPENSABLE

- € 1.8 turnover
- **4,7%** of EU 28 GDP
- + 25 million jobs (direct & indirect)
- + €78 billion (CAPEX) investments in the EU
- Crucial in an exceptionally large number of value chains
- Strongly resilient and strategically key to relaunch the EU economy post-COVID19

UNIQUE CROSS-SECTORIAL APPROACH

Accelerating Innovation and Maximising sustainable impact accross sectors and borders

- First Partnership ever gathering 8
 Process Industry sectors.
 Currently 10
- Continuous dialogue on R&I and trust relation across SPIRE sectors and beyond
- Enhanced voice to shape the framework of process innovation and competitiveness through the dialogue with the public sector

THE VOICE OF 10 SECTORS

JOINT SOLUTIONS

- Collaboration with the innovation ecosystem, the value chain, society and the public sectors (RTOs, NGOs, EC, MS, regions...)
- Development of joint solutions through 125 SPIRE projects funded from 2014 to 2019, always respecting the Intellectual Property

- Direct access to a pool of knowledge, talent and applied research services through the RTOs
- Direct access to specialised SME providers
- Direct access of SMEs to growth opportunities, customers and new markets

OPPORTUNITIES

GOVERNANCE SPIRE cPPP

PRIVATE PARTNER ASSOCIATION SPIRE

- Discuss priorities
- Form consortiaApply to calls
- Propose call topics

GENERAL ASSEMBLY 1 representative per member Board of Directors Up to 19 members + honorary members or advisors Executive Director IRIAG - ADVISORY GROUP Chair / Vice-chair Chairs of WGs Industry RTOS Et al WGs / TASK FORCES / TOPIC GROUPS (1 chair + 1 co-chair / group)

PARTNERSHIP BOARD

- Discuss priorities & call topics H2020/HEU
- Assess progress

PUBLIC PARTNER

- Develop work programme
- Publish open calls

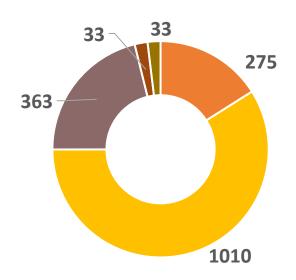
European Commission

TRENDS REPORT 2020 – SPIRE PROJECTS OUTCOMES

In 2014-2019 SPIRE cPPP has supported a total of 125 projects.

1775

organisations participating in SPIRE granted projects


30%

of the participating organisations are **SME**s

EUR 205 million

EC contribution to SPIRE projects **SME participants**

Organisations in granted projects per category

- Higher or Secondary Education Establishments
- Private for-profit entities
- Research Organisations
- Public Bodies
- Others

Processes4Planet Towards the Next Generation of EU Process Industry

Transformation levers and tools to enable P4Planet to achieve its ambitions

Processes4Planet Innovation to reach First deployment & deliver Impact

Unique cross-sectoral community

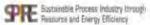
36 innovation programmes to FILL the GAP

Skills, Jobs, Competitive gap analysis, Framework/Standards

First-of-a-kind plants

Hubs for Circularity

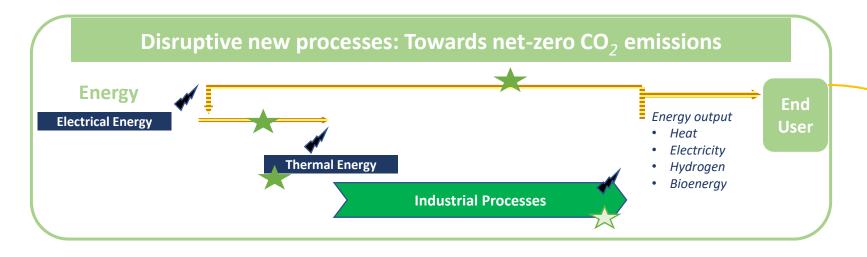
Ambitions to enable **Prosperity for all**

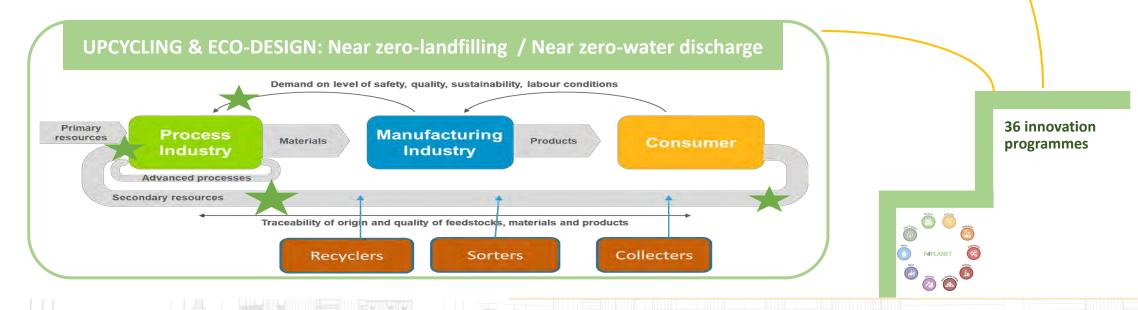

Climate neutrality

Near zero landfilling and near zero water discharge

Competitive EU process industries

Processes4Planet Innovation Areas progress towards 2050


Areas of common challenges Progress up until milestone year¹ Innovation area 2024 2030 2040 2050 Renewable energy integration **Industrial-Urban Symbiosis** Heat reuse Electrification of thermal processes **Process** Electrically-driven processes **Innovation** Hydrogen integration CO2 capture for utilisation CO₂ utilisation in minerals CCU CO₂ & CO utilisation in chemicals and fuels **Resources Efficiency & Flexibility** Energy and resource efficiency **Digitalisation** Circularity of materials Industrial-Urban symbiosis Non-technological aspects Circular regions Digitalisation Non-technological aspects


Combining efforts & ideas will accelerate innovations

¹ Progress is depicted here as % of total TRL9 projects programmed in each area, and for circular regions, digitalisation, and non-technological aspects % of total investment needs until 2050

Processes4Planet Innovation for Sustainable Prosperity

SUCCESS STORIES PORTFOLIOS

CARBON CAPTURE AND USE STORIES

P4Planet roadmap

Building on the results of SPIRE projects

- **CLIMATE AMBITION:** towards the net-zero emissions scenario
- Focus on: process CO2 emissions and indirect emissions
- **Specific Objective 2:** Reduce emissions through CO/CO2 capture and use.
 - Develop new efficient CO/CO2 capture and purification technologies
 - Develop efficient CO2 valorisation routes to chemicals, minerals and fuels
- KPI 2: co2 eq. emissions reduction potential through CO2
 Capture and Use measured through a relevant number of demonstrators. (Target: 100% reduction trajectory at TRL7)

14 IAs	Innovation area	36 IPs	Innovation programme
1	Renewable energy integration	1a	Integration of renewable heat and electricity
		1b	Integration of bioenergy, waste and other new fuels
		1c	Hybrid fuel transition technologies
		1d	Flexibility and demand response
2	Heat reuse	2a	Advanced heat reuse
2	Electrification of thermal processes	3a	Heat pumps
2		3b	Electricity-based heating technologies
4	Electrically-driven processes	4a	Electrochemical conversion
		4b	Electrically driven separation
4	Hydrogen integration	5a	Alternative hydrogen production routes
		5b	Using hydrogen in industrial processes
		5c	Hydrogen storage
6	CO2 capture for utilisation	6a	Flexible CO2 capture and purification technologies
7	CO2 utilisation in minerals	7a	CO2 utilisation in concrete production
7		7b	CO2 utilisation in building materials mineralisation
	CO2 & CO utilisation in chemicals and fuels	8a	Artificial photosynthesis
8			Catalytic conversion of CO2 to chemicals or fuels
		8c	Utilisation of CO2 and CO as building block in polymers
		8d	Utilisation of CO to chemicals or fuels
9	Energy and resource efficiency	9a	Next-gen catalysis
		9b	Breakthrough efficiency improvement
	Circularity of materials	10a	Innovative materials of the process industries
10		10b	Inherent recyclability of materials
		10c	Upgrading secondary resources
11	Industrial Links a symphicals	10d	Wastewater valorisation
11	Industrial-Urban symbiosis	11a 12a	Demonstration of Industrial-Urban Symbiosis
12	Circular regions	12a 12b	European Community of Practice Development of Hubs for Circularity
	Digitalisation	13a	Digital materials design
		13b	Digital process development and engineering
		13c	Digital plant operation
13		13d	Intelligent material and equipment monitoring
		13e	Autonomous integrated supply chain management
		13f	Digitalisation of industrial-urban symbiosis
14	Non-technological aspects	14a	Integration of non-technological aspects in calls
		14b	Human resources, skills and labour market

Processes4Planet Innovation for Sustainable Prosperity

De-risk investments

Financial Flow up to TRL9

Define framework conditions for market uptake

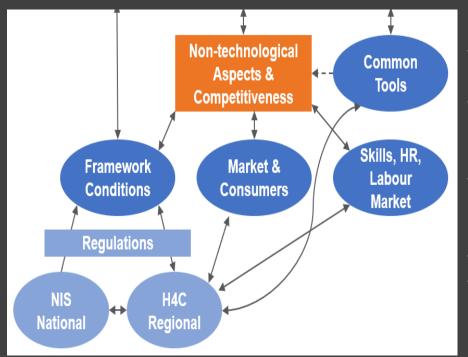
Available & affordable green energy as enabler

Holistic digital process innovation 4.0 as accelerator

Hubs for Circularity to accelerate innovation

36 innovation programmes

Processes4Planet


"European Energy Intensive Industry Skills Agenda and Strategy" Erasmus+ Project

SPIRE/P4PLANET sectors and innovation eco-system working together for the skills of the future on Industrial-Urban Symbiosis and the Process Industry 4.0

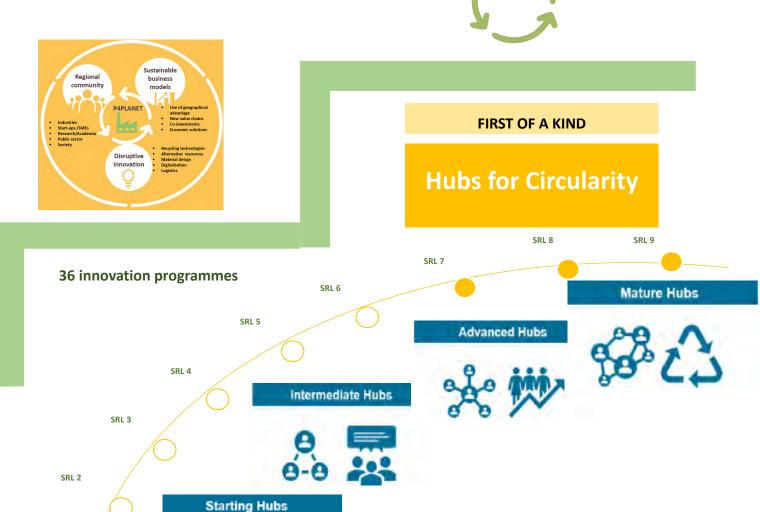
NON-TECH & SOCIAL INNOVATION

Delivering more societal, economic and market impact.

- EU, national & regional framework conditions
- Management of market & consumer demands & changes
- Effective common tools:
 LCA, business models,
 digital methodologies...
- Gender balance
- Human Resources, skills and labour market

Processes4Planet Objective: Impact

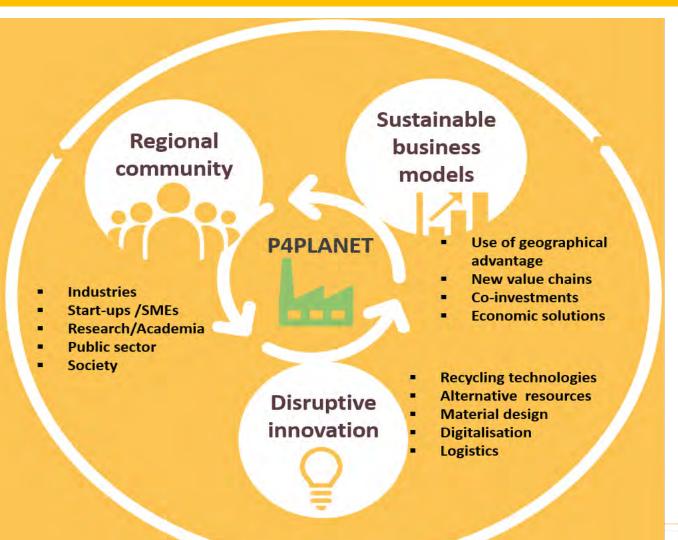
MARBLES: a showcase of the Process Industry transformation


- First-of-a-kind Large scale plants in operation
- Combine one or several P4Planet Innovations towards the 2030/2050 ambitions to reach Climate neutrality and circularity
- Acting as Hubs of bulk amounts of resources from industry and the municipalities.
- Several marbles will likely connect to reach together the targets of the partnership's KPIs
- 50+ Marbles identified of which ca. We aim to launch 15 in the period 2021 2030, responding to the green-deal plan, and enabled by the P4planet innovation portfolio

PRIVATE INVESTMENTS

- Industry leader commitment
- when technical and economic feasibility is proved through Horizon Europe programs.
- Public support needed to de-risk and accelerate

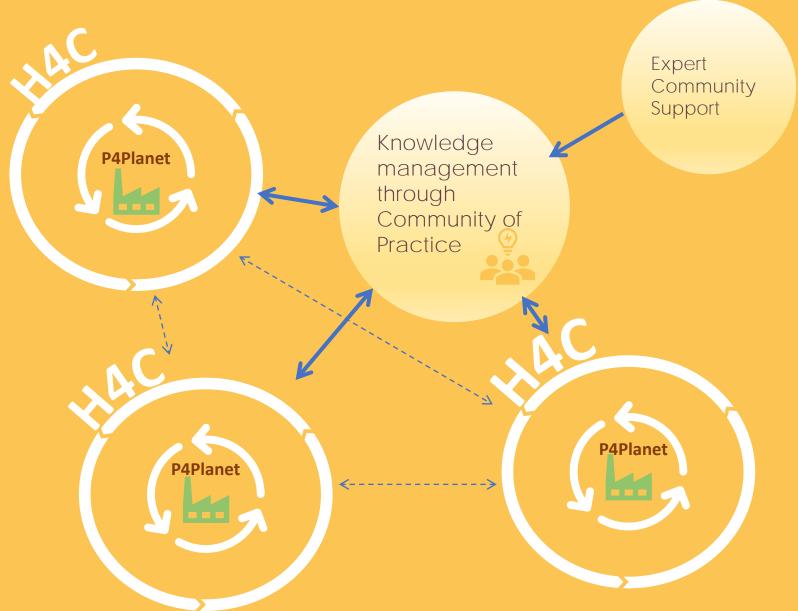
Processes4Planet HUBS FOR CIRCULARITY (2)


SRL: Symbiosis Readiness level

Based on the "Study and portfolio review of the projects on industrial symbiosis in DG Research and Innovation: findings and recommendations" by Klaus H. Sommer

Processes4Planet HUBS FOR CIRCULARITY (1)

Systemic geographical proximity connected across EU regions



THE H4Cs CONCEPT

Self-sustaining economic industrial ecosystems for full-scale Industrial-Urban Symbiosis and Circular Economy, closing energy, resource and data loops and bringing together all relevant stakeholders, technologies, infrastructures, tools and instruments necessary for their incubation, implementation, evolution and management.

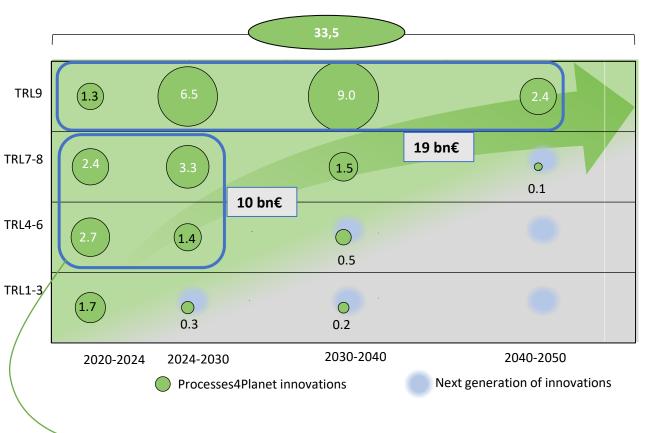
- → Territorial systemic solutions (regional approach)
- → Processes4Planet inside!
- Facilitation necessary to overcome nontechnological barriers to symbiosis

European Community of Practice

Platform for non-competitive exchange of knowledge and best practices

- Practical toolbox: technologies and tools
- Innovation programmes for finding the missing pieces in the puzzle of symbiosis
- Modelling circular concepts and plants of the future
- Enhancing replicability
- Communication and transfer of technologies and solutions
- Education and training
- Sustainability of the network

MASSIVE INVESTMENTS NEEDED TO REACH IMPACT


JOINING FORCES WILL HELP

Roll out investments

2050 impacts

- Estimated in trillions €
- Two rounds of investments for PI before 2050

Near zero landfilling and near zero water discharge

Competitive EU process industries

R&I Investments can be optimized if we avoid redundancies

WHY JOIN A.SPIRE

Teaming up to address the challenges of Climate Change, Circular Economy and Competitiveness together

LARGER INDUSTRIES:

- Continuous dialogue on R&I across SPIRE sectors and beyond
- Channel to raise your voice on R&I for HEU & other programmes
- Access to a pool of knowledge & talent (in Universities, research centres....)
- Direct access to SME providers
- Collaboration with the innovation ecosystem and value chain
- Access to developments by other projects, SMEs, universities...
- Protection of intellectual property
- Dialogue with the EC, MS, regions, MePs & other stakeholders

Further benefits to other members

SMEs:

- Direct Access to growth opportunities
- Direct Access to new markets
- Direct Access to large industry customers

RTOs, NGOs Innovation agencies et al.:

- Direct Access to applied innovation
- Link to deliver impact to society and regions
- Collaboration for disruptive innovations

SMEs in SPIRE: A Success Story

Growing above the EU-28 average

- 7 new employees / SME (higher than EU average = 2)
- 40% growth in turnover (+double than EU average)
- 27% of SMEs won new business through SPIRE contacts

Key to Process Innovation

- Innovative SMEs delivering innovations for the Process Industry
- They develop the solutions with their customers
- The roadmap signals their market opportunities

SMEs ARE PARTNERS IN +100 SPIRE PROJECTS like Dryficiency, Dream, Reslag, Liberate, etc...

SMEs COORDINATE + 17 SPIRE ROJECTS like Scaler, Sharebox, Maestri, IdB, Spring, MultiCycle, etc...

Ceramics awarded as the most successful small sector in SPIRE projects

SMEs in P4PLANET: Key players & opportunities PPR

First-of-a-kind plants

Hubs for Circularity

36 innovation programmes to FILL the GAP

SPECIALISED ON DIFFERENT AREAS:

- Process Innovation for the Process Industry
- Engineering
- Waste Management

Key players in the **HUBS4CIRCULARITY**

RAISE THE SMEs VOICE

- In Working Groups
- In the Advisory Group
- In the Board

PROJECTS

WHAT'S NEXT

- February –March 2021:
 - A.SPIRE members finalise topics and negotiations for P4Planet's MoU
 - Define new working structure within A.SPIRE
 - 8 to 17 Feb: P4PLANET's ideation/brokerage event
 - March (tbc): follow up P4Planet's Brokerage event
 - 19 March (A.SPIRE BoD) + 31st March (A.SPIRE General Assembly)
- April 2021: Signature of Processes4Planet MoU with the European Commission
- May 2021: Processes4Planet launch event (Process Industry conference)
- April June 2021:
 - Kick-off of new working structure of A.SPIRE: engagement of our members
 - Kick-off of the new governance and advisory structures of Processes4Planet: Partnership Board, Feedback Panel and Impact Panel
 - 19 June: A.SPIRE BoD meeting
- September November 2021: Projects & H4Cs Forum + Board meeting

INTERNATIONAL WORKSHOP ON CO2 CAPTURE AND UTILIZATION TU/e - Eindhoven - 16-17 February 2021

Session 2A (chairperson Giampaolo Manzolini)

15:00-15:20 Dr. G. Garcia - LCA and TEA of the COZMOS technology

Dr. A. Mattos or Dr. A. Mitchell - How can public policy and business model innovation be developed to address challenges of CCUS and realise the opportunity?

15:40-16:00 Dr. L. Engelmann - Perception of CO_2 -based fuels and their production in international comparison

16:00-16:20 Dr. N. Dunphy - Social studies in REALISE project

ORGANIZED BY

SPONSORED BY

LCA and TEA of the COZMOS technology

Guillermo Garcia-Garcia

G.Garcia-Garcia@Sheffield.ac.uk

UK Centre for Carbon Dioxide Utilisation
The University of Sheffield

International Workshop on CO2 Capture and Utilization

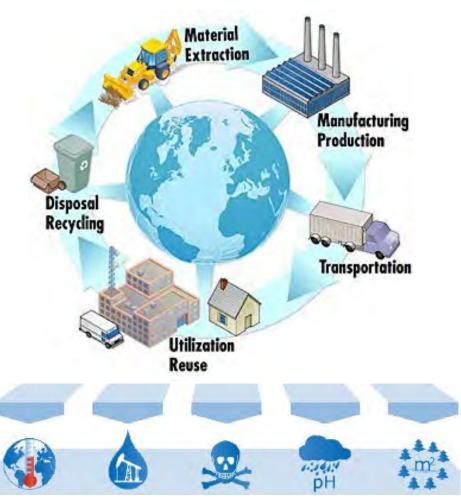
16-17 February 2021

Contents

- Introduction to LCA and TEA methodologies
- Literature review of LCA studies of CCU products
- Environmental analysis of catalysts
- Initial stages of the full LCA and TEA for COZMOS
- Conclusions

LCA and TEA methodologies

- As research in CCU matures, investors and funders require clarification on the credentials of these technologies
- Governments and regional authorities are creating roadmaps and require clarity on CCU options
- Companies are trying to choose between bio-based, CCU and other waste routes to create their products and need data for comparisons
- Life-Cycle Assessment (LCA) can help us to analyse environmental consequences of decisions
- Techno-Economic Assessment (TEA) can help us to analyse economic consequences of decisions
- Both LCA and TEA allow technologies to be compared


What are the environmental and economic consequences of CCU? Can CCU reduce CO₂ emissions and be economically profitable?

Definition of LCA

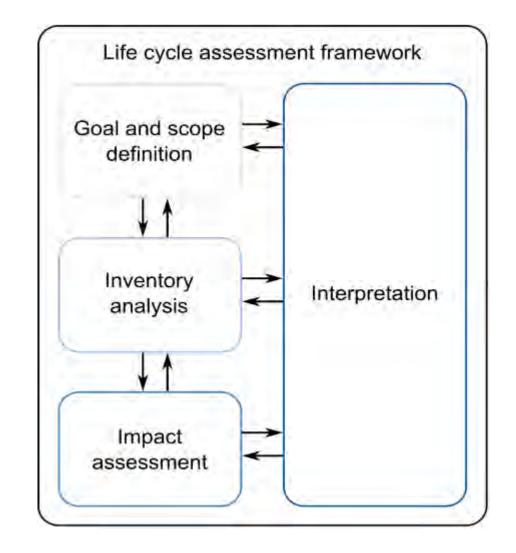
Life-cycle assessment is a methodology to account for the environmental impacts of a product, service, process, company, etc. throughout its entire life cycle

Structure of LCA studies

INTERNATIONAL STANDARD ISO 14040

Second edition 2006-07-01

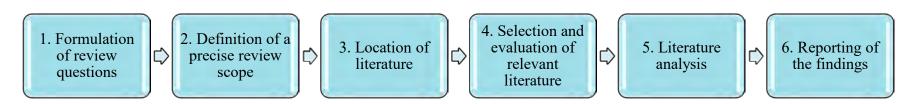
Environmental management — Life cycle assessment — Principles and framework


Management environnemental — Analyse du cycle de vie — Principes et cadre

INTERNATIONAL STANDARD

ISO 14044

> First edition 2006-07-01


Environmental management — Life cycle assessment — Requirements and guidelines

Literature review

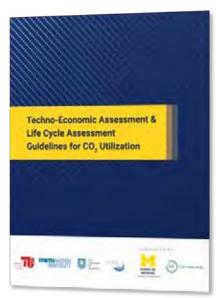
 Following CCU products studied: methanol, methane, DME, DMC, propane and propene

Methodology for analytical review

Research questions

- 1. What are the most promising products that could be produced from CO₂?
- 2. What are the potential environmental impacts and/or benefits of producing these products from CO_2 , in comparison with traditional methods?
- 3. What is the level of application of the LCA methodology to study CCU?

Literature review – general findings


- Large potential from CCU for a number of feedstocks
- Main constraints:
 - Availability of green hydrogen. If hydrogen is from fossil sources or current grid mix, the environmental benefits can be reduced or disappear
 - The origin of electricity has a key role in determining the final environmental impact of the process. Current grid mix is unfavourable, future scenarios need to be realistic
 - CO₂ capture, separation, purification and transport needs have a high impact
- Need for full LCAs to assess the environmental impacts
 - Not only look at Global Warming Potential or carbon footprint, but also other impacts
 - All life cycle stages have to be considered for a consistent, robust analysis
- A strong value chain is required to support the production of CO₂-based products

Literature review – use of LCA to analyze environmental impacts of CCU technologies

- Few LCA studies of CCU systems have been undertaken so far
- Often, significantly different results are obtained for LCA studies carried out for the same CO₂-based product manufactured by the same route
- Main reasons behind this are different assumptions about the supply of feedstocks (e.g. CO_2 , H_2 and electricity), definition of the system boundaries, and the way to allocate products and co-products (i.e. multi-functionality issues)
- Most studies focus on climate change or global warming only, omitting the rest of the environmental impact categories
- A common framework for LCA of CCU is needed: in addition to generic LCA standards (e.g. ISO 14040, ILCD Handbook) we are using The Guidelines for LCA and TEA of CCU

More information in our journal article

- "Analytical review of Life Cycle Environmental Impacts of Carbon Capture and Utilization Technologies"
- Published in ChemSusChem in January 2021
- Open Access, free to download at:

https://chemistryeurope.onlinelibrary.wiley.com/doi/a bs/10.1002/cssc.202002126

doi: 10.1002/cssc.202002126

Analytical Review of Life-Cycle Environmental Impacts of Carbon Capture and Utilization Technologies

Guillermo Garcia-Garcia, [4] Marta Cruz Fernandez, [4] Katy Armstrong, [4] Steven Woolass, [6] and Peter Styring *(4)

[a] UK Centre for CO2 Utilization, Department of Chemical and Biological Engineering, The University of Sheffield, Sir Robert Hadfield Building, Sheffield, S1 3JD, UK

[b] Tata Steel, Unit 2, Meadowhall Business Park, Carbrook Hall Road, Sheffield S9 2EQ, UK

*Corresponding author. E-mail: p.styring@sheffield.ac.uk

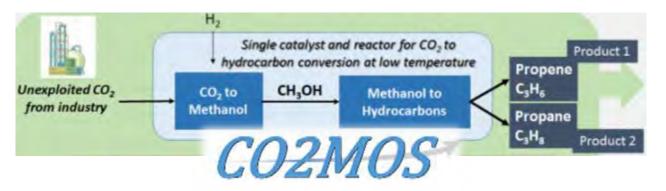
Carbon capture and utilization (CCU) has been proposed as a sustainable alternative to produce valuable chemicals by reducing the global warming impact and depletion of fossil resources. To guarantee that CCU processes have environmental advantages over conventional production processes, thorough and systematic environmental impact analyses must be performed. Life-Cycle Assessment (LCA) is a robust methodology that can be used to fulfil this aim. In this context, this article aims to review the life-cycle environmental impacts of several CCU processes, focusing on the production of methanol, methane, dimethyl ether, dimethyl carbonate, propane and propene. A systematic literature review is used to collect relevant published evidence of the environmental impacts and potential benefits. An analysis of such information shows that CCU generally provides a reduction of environmental impacts, notably global warming/climate change, compared to conventional manufacturing processes of the same product. To achieve such environmental improvements, renewable energy must be used, particularly to produce hydrogen from water electrolysis. Importantly, we identified different methodological choices being used in the LCA studies, making results not comparable. There is a clear need to harmonize LCA methods for the analyses of CCU systems, and more importantly, to document and justify such methodological choices in the LCA report.

Keywords

Abstract

Carbon capture and utilization • environmental analysis • life-cycle analysis • sustainable chemistry • renewable resources

1 Introduction


Global anthropogenic fossil CO₂ emissions have continuously increased over the last decades, peaking at 37.9 Gt in 2018 [1]. They represent over 75% of the total anthropogenic greenhouse gas (GHG) emissions [1], causing global warming and therefore affecting the Earth's climate system. IPCC [2] estimates that, if these emissions keep growing at the current rate, global

Page 1 of 54

Environmental impacts of catalysts

- Catalyst compared:
 - \checkmark ZnO:ZrO₂ / ZSM-5
 - ✓ PdZn@ZrO₂ / SAPO-34
 - ✓ ZnCeZrO_x / H-RUB-13
- Cradle to gate comparison
- The comparison was initially done in terms of 1 g of catalyst produced

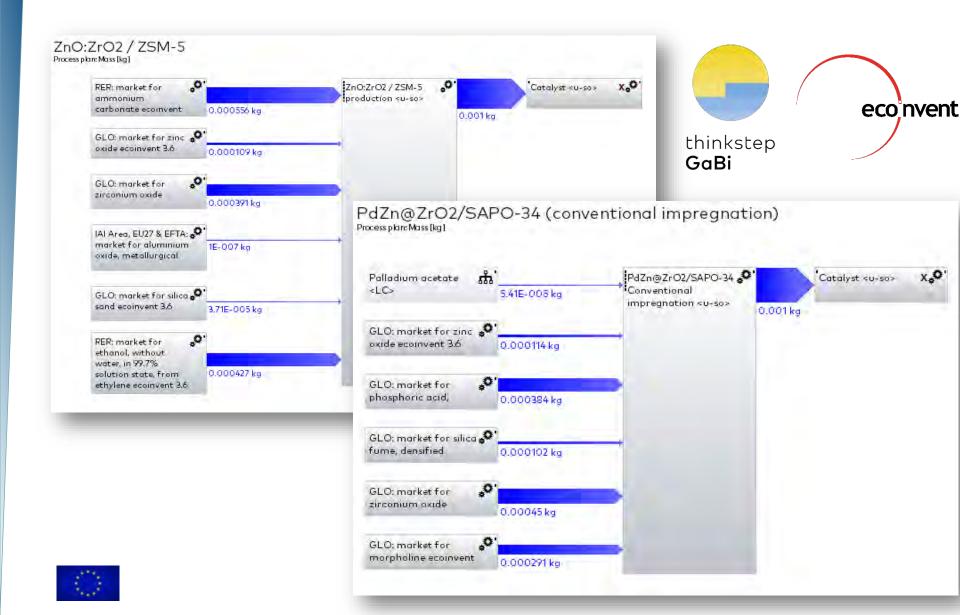
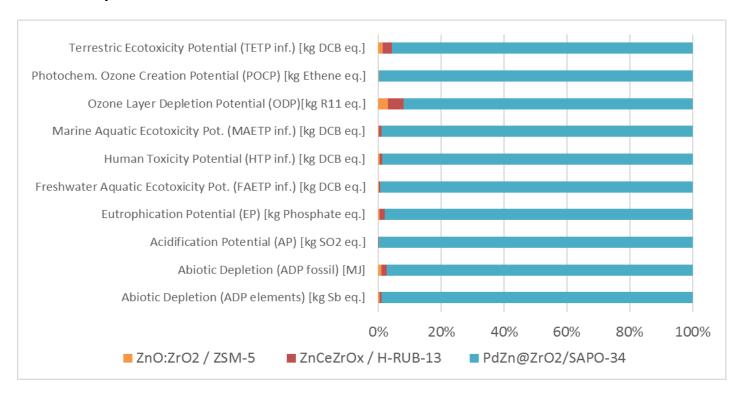
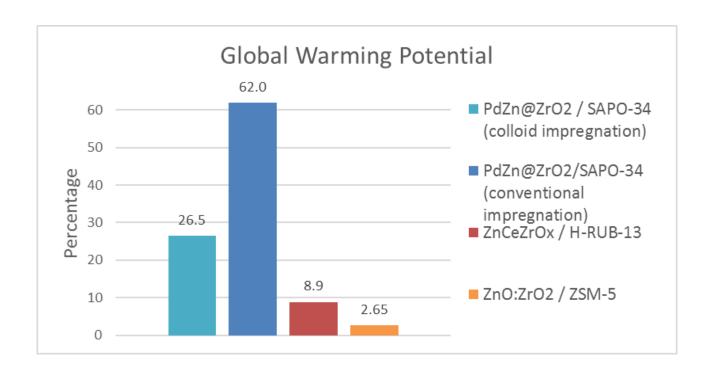


Diagram source: Silka Concrete


GaBi models

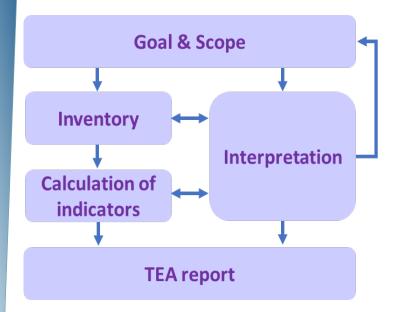
Environmental impact results

- With the assumptions of the study, the catalyst with palladium had the largest global warming potential, most of it coming from the palladium content
- The catalyst with the lowest GWP is ZnO:ZrO2/ZSM-5



Sensitivity analysis

- We also did sensitivity analysis for the catalyst preparation method and the reaction yield
- Including the increased yield, reduced the relative impact of the catalyst compared to the other ones, but remained the highest one


Definition of TEA

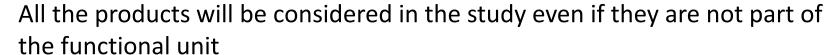
- Techno-Economic Assessment (TEA) is a methodology to analyze the technical and economic performance of a process, product or service
- TEA integrates cost, revenue and technical criteria with a general focus on the production phase (but not always) – typically gate to gate type studies
- TEA is an assessment methodology that can aid in making decisions
- TEA can be used to feed back recommendations during the design phase
- TEA results are specific to a scenario/context

Structure of TEA studies

TEA is built on the framework outlined in the LCA ISO

- Goal provides guidance for the overall study
- Scope defines the system boundary
- Inventory collects the relevant data
- Calculation produces results
- Interpretation assesses the quality of results, provides recommendations & conclusions
- Reporting captures the outputs of the study in a form that can be communicated consistently and transparently

TEA is an iterative process – we often go back and make adjustments

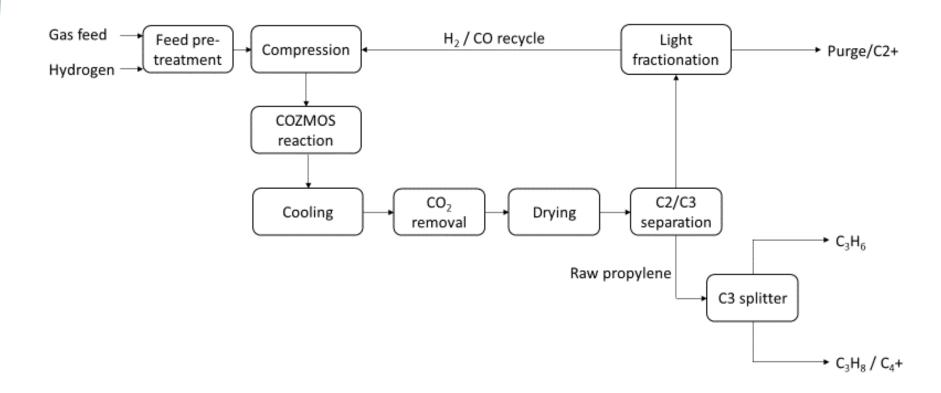

Scope of LCA and TEA studies

- Both <u>LCA</u> and <u>TEA</u> will be aligned
- The main goal is to assess whether the use of carbon intensive gases from the steel industry and the petrochemical refinery to produce propane and propene would have an economic and/or environmental benefit when compared to the conventional production of those products
- Gate to gate study

Upstream operations are unchanged in the different scenarios so they are not included

Functional unit:

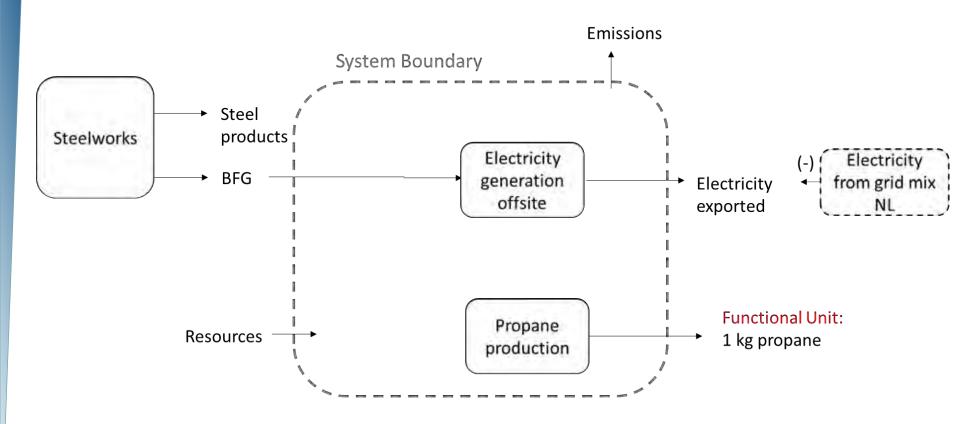
Production of 1 kg of propane



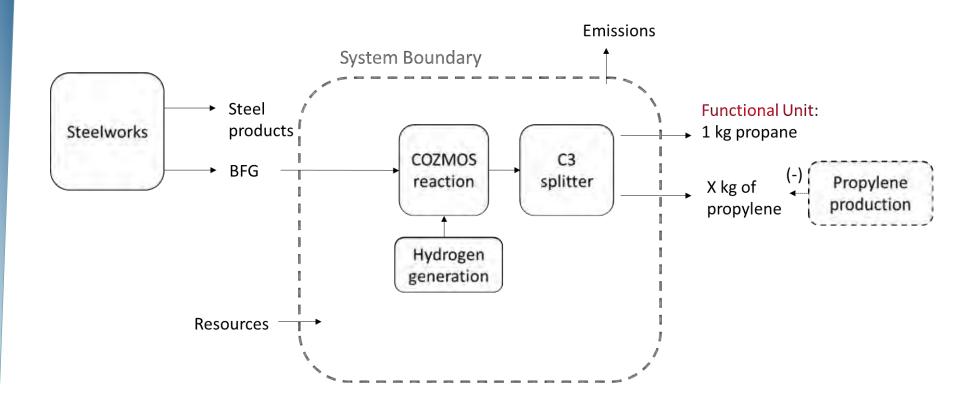
The product distribution can be adjusted with the reactor conditions

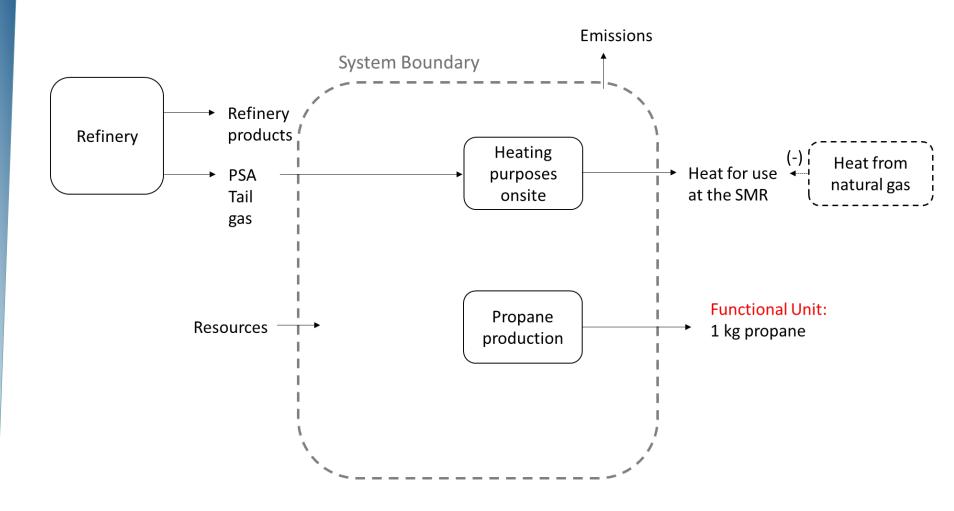
COZMOS process

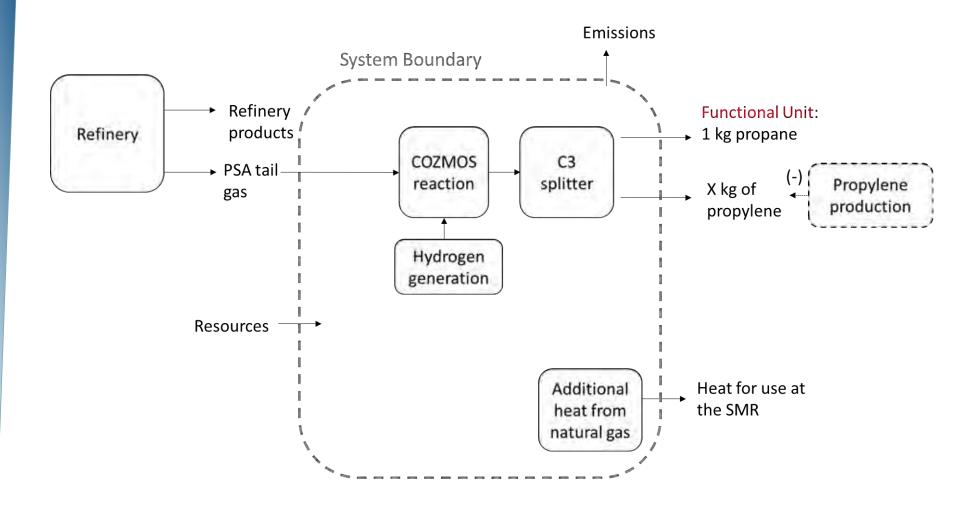
LCA and TEA scenarios


4 main scenarios considered:

- 1. Tata Steel reference or baseline case, where the BFG is sent offsite for electricity generation
- 2. Tata Steel COZMOS scenario, where BFG is used within COZMOS
- 3. Tupras reference case, where the PSA tail gas is used for heating
- 4. Tupras COZMOS scenario, where the PSA tail gas is used for the COZMOS process


Scenario 1: Reference case, Tata Steel

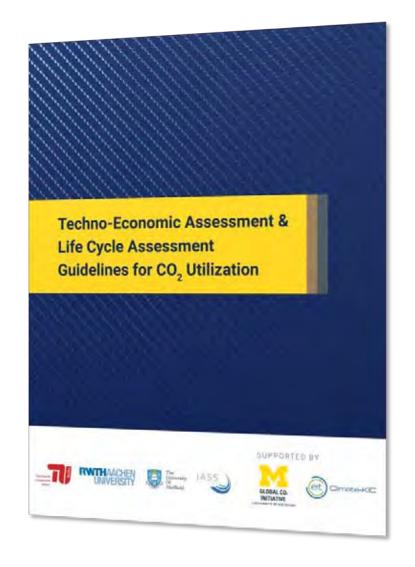

Scenario 2: COZMOS scenario, Tata Steel


Scenario 3: Reference case, Tupras

Scenario 4: COZMOS scenario, Tupras

The Guidelines for LCA & TEA of CCU

Project goal:


- Define a common assessment language to push R&D, investment and commercialization of CCU
- Align LCA and TEA
- Enhance transparency and comparability
- Enable strong acceptance and adoption of guidelines

Available at:

http://umlib.us/CO2Guidelines

DOI: 10.3998/2027.42/145436

ISBN: 978-1-916 4639-0-5

Conclusions

- LCA allows you to calculate the environmental impacts throughout a product or process life time
- TEA allows you to analyze the technical and economic performance of a process or product
- LCA and TEA can support decisions based on environmental and techno-economic performance
- We are using LCA to identify possible bottlenecks in the process
- We applied a streamlined LCA to potential catalysts to rank them according to their environmental impact
- We are undertaking full LCA and TEA of the COZMOS process in accordance with existing standard references and guidelines

Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

Katy Armstrong, Stephen McCord, Peter Sanderson, Peter Styring Department of Chemical & Biological Engineering, The University of Sheffield

Marta Cruz Fernandez, Steven Woolass
Tata Steel

Thank you for your attention

Guillermo Garcia-Garcia

G.Garcia-Garcia@Sheffield.ac.uk

UK Centre for Carbon Dioxide Utilisation
Department of Chemical & Biological Engineering
The University of Sheffield

CCUS business models & public policy support

Addressing challenges and realizing opportunities for CCUS

February 2021

elementenergy

Antonia Mattos: Amelia Mitchell: antonia.mattos@element-energy.co.uk amelia.mitchell@element-energy.co.uk

Element Energy, a consultancy focused on the low carbon energy sector

Element Energy covers all major low carbon energy sectors:

Selected clients:

Agenda

Introduction

Risks policy must address

Business model example

CCU policy requirements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884418

C4U: Advanced Carbon Capture for Steel Industries Integrated in CCUS Clusters (Horizon 2020 Funded Project)

Testing and demonstration of capture technologies at TRL7 (WP1 & WP2)

Integrating CO, capture in industrial installations and clusters (WP3 & WP4)

Societal readiness. public policy and the business case (WP5 & WP6)

Impact: Successful demonstration of CO2 capture from industrial sources

Impact: Economic and safe demonstration of integrated CCUS value chain

Impact: Viable pathways to rollout CCUS in areas with high concentrations of CO₂ emitting industries and nearby geological storage

Dissemination, communication and public engagement

Objectives:

- Understand the risks and barriers to CCUS, including those of stakeholders in NSP cluster.
- Create a short-list of recommended CCUS business models for long-term integration of CCUS in the NSP cluster.
- Construct an effective narrative for CCUS in order to contribute to societal readiness and generate public support

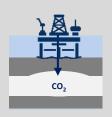
Why are policies and business models needed?

CO₂ capture from industrial emitters

Need to remain financially competitive with sites w/o CCS – need strong revenue model and protection from some risks.

CO₂ capture from power emitters

Need to have certainty on future role in power market and a guaranteed revenue from services provided.


CO₂ transport operators

Need certainty of CO₂ volumes and transport fees, from emitters and/or storers (or protection from crosschain default risks).

Government and society

Need decarbonisation at lowest cost to society and minimum environmental impact. Need to understand the benefits of CCUS.

CO₂ storage operators

Need certainty of CO₂ volumes and storage fees. Early projects need support with CO₂ leakage liability.

CO₂ utilisation

Need regulatory framework for CO₂ accounting and verification of climate benefits. Need development of enduse markets and likely financial support or end-use standards.

Agenda

Introduction

Risks policy must address

Business model example

CCU policy requirements

Lack of long-term economic viability

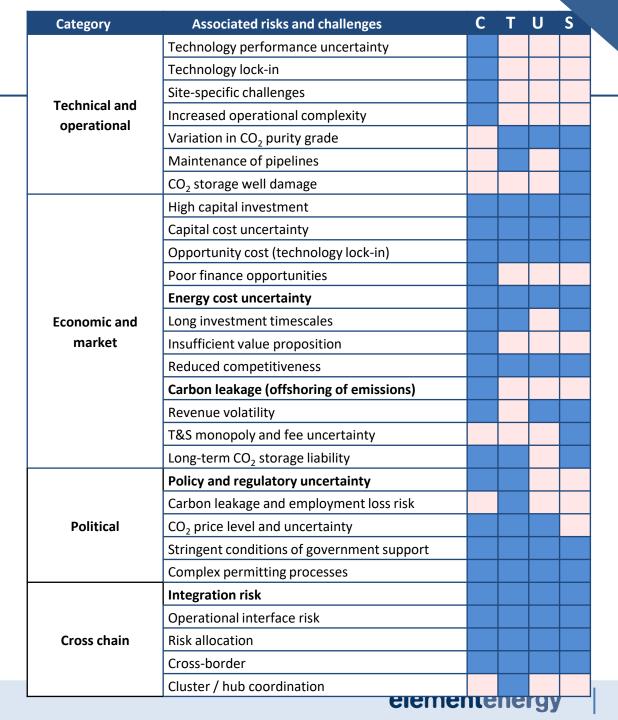
Poor risk management

Technical integration and compatibility when scaling up from demonstration to commercial scale

Over-reliance on Government subsidies

Additional factors specific to full-chain CCUS projects

Poor management of cross-chain liabilities and poor risk ownership allocation among project stakeholders


Poor coordination of construction timescales or poor integration design between the interfaces of each CCUS segment

Legend:

C Capture Segment predominantly affected
T Transportation

U Utilisation Segment less affected

S Storage

Agenda

Introduction

Risks policy must address

Business model example

CCU policy requirements

Project example - Business model characterisation & assessment

Revenue*

Main revenue model:

- CfD-like mechanism (or CPF)
- RAB-like mechanism
- Cost plus: public operational payments (open book)
- CO₂ abatement payments (fixed or variable)
- Green product premium or product CO₂ taxes
- CCS certificates tradeable, obligated
- Tax credits tradeable
- Public procurement of lowcarbon products

Supporting only:

- CO₂ price avoidance or credits
- CO₂ utilisation & EOR
- Energy performance standards
- Obligation (CCS or industrial decarbonisation)

Funding source

- Exchequer (taxpayer)
- All industrial emitters
- All national emitters
- Fossil fuel suppliers
- Gas and/or electricity consumers
- Purchasers of low carbon products (price premium)

Supporting

- CO₂ sales for utilisation eg EOR
- CO₂ tax avoidance

Risk Management

- Public loan guarantees
- Public underwriting of operational risks e.g. opex
- Stable policy / long term contracts
- Insurer / buyer of last resort
- Price floor / ceiling
- Compensation for BAU disruption
- Revenue guarantees*
- Border adjustments

Supporting cross-chain requirements:

- Contractual arrangements eg take-or-pay, interface agreements, T&S fee regulation
- Public backstops on crosschain default
- Multiple emitters and stores

Capital

- Public grants
- Public loans
- Public equity
- Emitter equity
- Investor / JV equity
- Debt / loans (inc Green bonds)
- Multilateral funds

Ownership

- Private emitter
- Private other eg
 JV
- PPP
- Public direct
- Public through state-owned enterprise or SPV

Build additional elements and instruments around revenue model to mitigate risks not addressed by *revenue model* itself. Assess complete business model using step 1 & 2 criteria.

Step 1 criteria: industrial acceptability

- . Capital availability or low cost financing
- 2. Strength of revenue incentive
- 3. Industry competitiveness and carbon leakage
- Flexibility for operational cost uncertainties
- 5. CO₂ price level and uncertainty
- 6. Simplicity and transparency for industry

Step 2: government acceptability

- .. Cost: efficiency promotion
- 2. Cost: ability to pass costs on
- 3. Policy track record
- 4. Speed and simplicity of implementation
- 5. Ongoing simplicity for government
- Applicability to industrial sectors
- Applicability to CCS phases

Business model summary example – CfD_c CO₂ certificate strike price

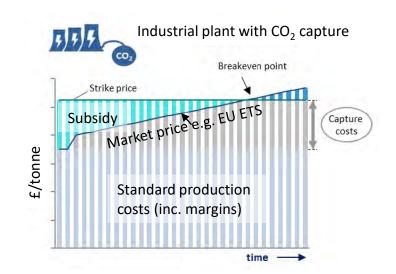
Revenue

- CfD_C on strike price £/tCO₂ for abated CO₂, via tradeable CO₂ certificates
- Offered contract fixed for duration but set annually for new joiners¹

Funding source options

 Government: general taxation or levies eg fossil fuel suppliers

Risk mitigation


- Capital loan guarantee in scale-up
- Long term contract on strike price²
- ICC cost backstops/pain-gain sharing

Capital

- Roll-out: Emitter equity & low-cost loans
- Scale up: grants or loan guarantees

Description & discussion

- The emitter is paid the difference between the CO₂ strike price contractually agreed (that needed to cover capture costs) and the prevailing CO₂ market price (e.g. EU ETS). For early projects, strike price may need to be high due to higher risks.
- Cost to government, if well designed, is only that required above the carbon price avoidance to compensate the emitter and protect competitiveness. Efficiency is incentivised, but costs are not passed on to consumers.
- Policy track record and applicability is high, although power CfD is on product price.

Industry criteria

Capital availability

Revenue strength

Competitiveness

Opex uncertainty

CO₂ price

Simplicity

Government criteria

Cost: efficiency

Cost: pass on

Track record

Implementation

Administration

Sectors

Phases

CCS specific?

Source: Element Energy for BEIS, industrial carbon capture business models 2018

1: Scale-up: negotiation on site by site basis. Roll-out: competitive bidding process.

2: Annual adjustments including linked to fuel prices or CPI-linked https://lowcarboncontracts.uk/payments

CCUS deployment: Several promising business models were identified for industrial carbon capture, drawing on comparable existing policies

Contract for difference:

CfD on CO₂ price relative to market CO₂ price (e.g. EU ETS) to provide guarantee of revenue

Cost plus:

All properly incurred ICC operational costs are reimbursed through taxpayer funding

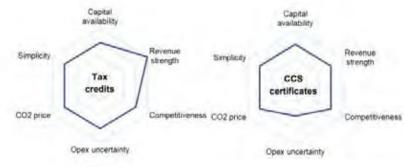
Regulated asset base:

Public regulation allows costs to be recovered through product prices e.g. of Hydrogen

Tradeable tax credits:

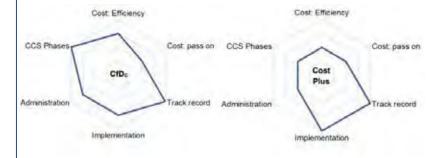
CCS tax credits awarded \$/tCO₂ to reduce firms tax liability (e.g. 45Q) or trade with other firms.

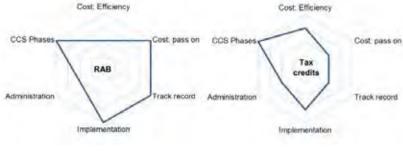
CCS certificates:


Certificates representing tCO₂ abated through CCS, which can be traded and emitters have an obligation.

Low carbon market:

End-use regulation e.g. on buildings to create a low carbon market & achieve product premium


Acceptability to industry evaluation



Acceptability to government evaluation

Key messages

Industrial carbon capture

- The key challenge for industrial carbon capture is providing the revenue level and certainty to incentivise industry to decarbonise and unlock capital whilst protecting it from carbon intensive competition, and therefore prevent carbon leakage.
- There are a number of available mechanisms to support the deployment of industrial carbon capture. The key to a successful mechanisms is balancing the private and public sector requirements. A number of key learnings can be taken from projects such as Longship, Lake Charles Methanol and Porthos e.g. financial structure, CCUS value chain construction and use of existing assets.
- Each of the revenue models requires support from a suite of risk management instruments to ensure risks are addressed where possible. This is particularly important for incentivising deployment of early projects where the private sector cannot bear these risks.

CCUS

- In the longer term as CCUS clusters grow and costs and risks reduce, CCUS may be able to transition to an unsubsidised end-state. This assumes either global action on climate or border adjustments for product carbon intensity.
- CCUS requires a business model for the other aspects of the chain, such as CO₂ transport and storage or utilisation. The integration of these business models is key, with cross-chain risks significant for early or isolated projects.
- The Netherlands has implemented a mechanisms in SDE++¹ (similar to a CfD), which is likely to form part of the North Sea Port business models. The NSP will be explored in more detail in our work in the coming 2 years.

Agenda

Introduction

Risks policy must address

Business model example

CCU policy requirements

CO₂ utilisation

Revenue from CCU products: challenges of market uptake & enabling interventions

Competitiveness & Market Potential: products from CO₂ utilisation need to compete with existing products and penetrate markets

Challenges to successful uptake of CCU products

Demonstrating product suitability:

- Technologies need to be demonstrated at scale to gain investor confidence
- Products need to meet existing standards and regulations. This can be a lengthy and expensive process. Prescriptive standards may prevent approval.
- Some markets are highly conservative needing further demonstrations over many years.

Developing market interest and product demand:

- Procurers may lack awareness or engagement with their Scope 3 emissions.
- Procurers may not have awareness of CCU products or the benefits of CCU. There may be a lack of clarity on how these benefits may be realized through carbon accounting.
- Consumer perception could be a barrier if not managed well, or a driver.
- Market drivers are typically not sufficient to justify cost premiums for CCU products.

Achieving cost-competitiveness:

- CCU products can be significantly more expensive than conventional fossil-based products (which may be in recite of subsidies).
- However, a select few routes are driven by cost-savings or improving the value of products.
- Avoidance of fees or compliance with regulations could become a driver if more ambitious incentives or targets are imposed.

Interventions to enable success

- Funding for innovation & demonstration projects.
- Facilitating testing & approvals processes.
- Updating of standards to be performance based.

- Increasing awareness and reporting of lifecycle & Scope 3 emissions.
- Clarifying carbon accounting for CCU products.
- Use of mandates or standards to increase demand for lower emission products.
- Funding of linked projects such as renewables, green hydrogen and carbon capture to lower costs.
- Introducing policies to level the field by recognizing sustainability benefits (performance based).

Support for CCU: examples of existing or adaptable support mechanisms

Research & Demonstration Funding

- Funding programmes in the EU (H2020, Innovation Fund), US and member states.
- Private investment initiatives and competitions such as Carbon Xprize

Testing, Approvals & Certifications

- US Clearing House facilitating aviation fuel approvals
- Sustainability Certification
 Schemes & product labelling

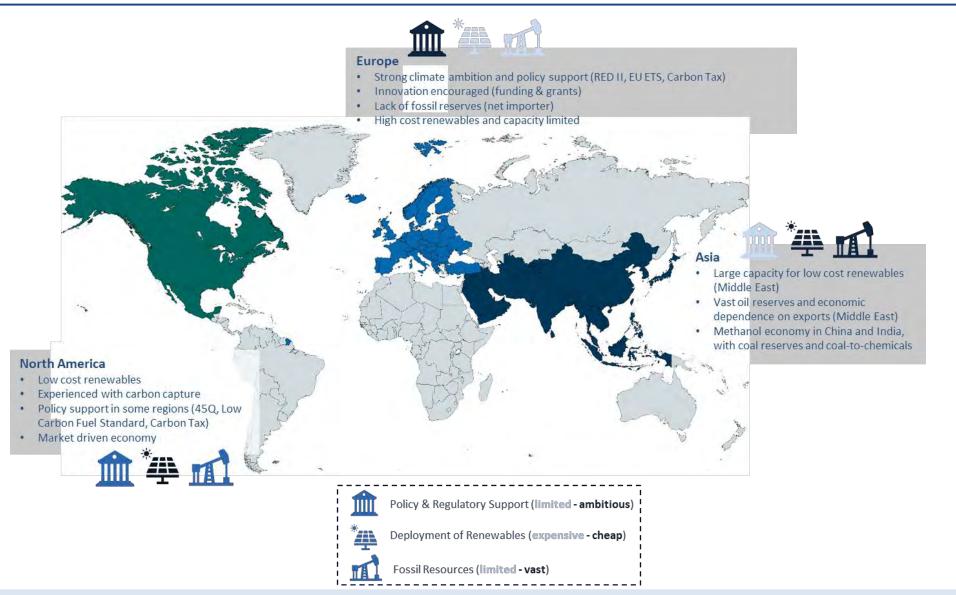
Low Emission Fuels Standards / Targets

- Blending obligations for road transport (EU RED II) and aviation fuels (e.g. Norway)
- Minimum standards (e.g. Californian Low-Carbon Fuel Standard)

Procurement Guidelines

- Standards for public infrastructure projects (e.g. UK BREEAM rating)
- Tender evaluation (e.g. Netherlands CO₂ performance ladder)

Level Field Mechanisms & Subsidies


- Carbon pricing (ETS or carbon tax)
- Operational subsidies such as Contract for Difference (e.g. Netherlands SDE++)

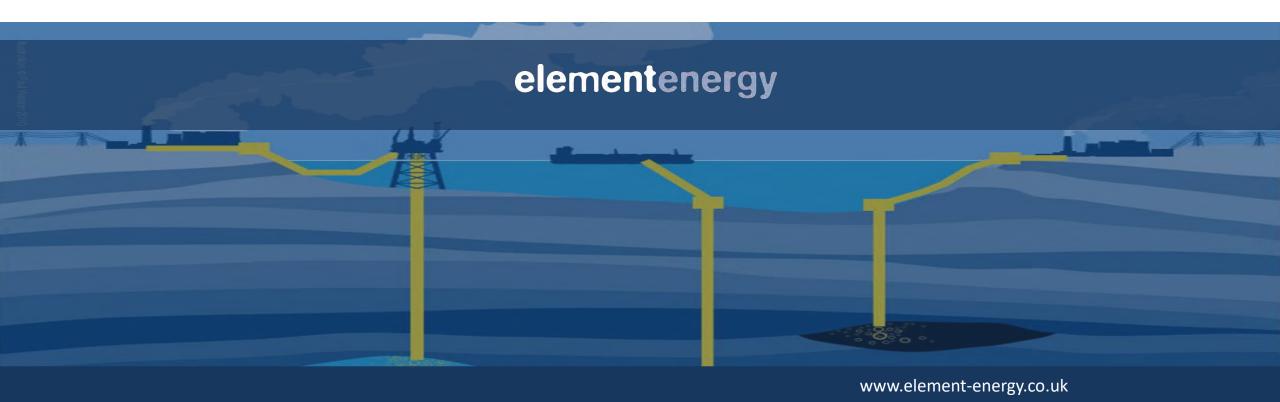
Company Monitoring & Reporting

- Emission reporting obligations (government & investor driven)
- Knowledge sharing & guideline development

Drivers, barriers and enablers for CCU can vary regionally. There may be local niche opportunities where CCU becomes favourable.

Thank You!

Thank you for your listening!


Any questions?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884418 Element Energy is a leading low carbon energy consultancy working in a range of sectors including industrial decarbonisation, carbon capture utilisation and storage (CCUS), hydrogen, low carbon transport, low carbon heat, renewable power generation, energy networks, and energy storage. Element Energy works with a broad range of private and public sector clients to address challenges across the low carbon energy sector.

For further information please contact: CCUSindustry@element-energy.co.uk

Perception of CO₂-based fuels and their production in international comparison

Linda Engelmann, M.A. HCIC | Chair of Communication Science RWTH Aachen University

engelmann@comm.rwth-aachen.de

Introducing the project

Closing the loop: from CO₂ to fuel

Direct electrocatalytic conversion of CO₂ into chemical energy carriers in a co-ionic membrane reactor

ecocoo.eu

Project aim

- set up a CO₂ conversion process using renewable electricity and water steam to directly produce synthetic
 jet fuels with balanced hydrocarbon distribution to meet the stringent specifications in aviation
- process is compact, modular quickly scalable and flexible, thus, process operation and economics can be adjusted to renewable energy fluctuations
 - → technology will enable to store more energy per processed CO₂ molecule and therefore to reduce GHG emissions per jet fuel ton produced from electricity at a substantial higher level

Consortium

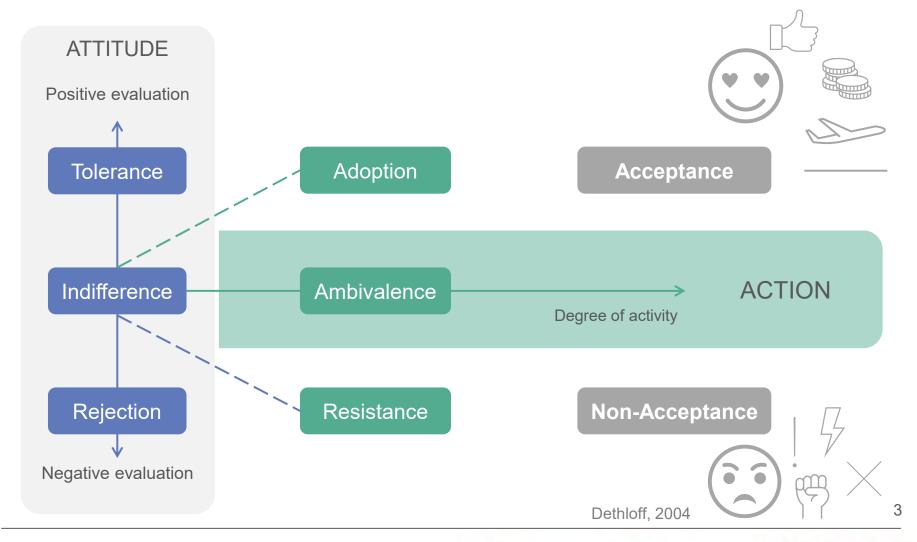
Integration of societal acceptance and perception into sustainable technology development

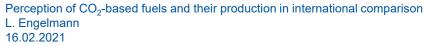
Consideration of public perceptions and acceptance from the very beginning of the developmental process

Informing technical designers about acceptance barriers

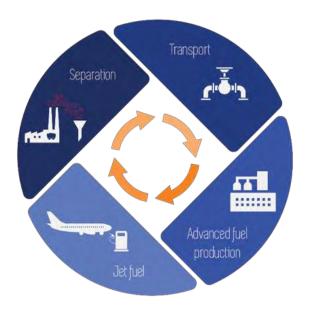
Education of the public and increase of awareness

Development of communicative strategies





How do we define acceptance?


Objects of investigation

Societal perception of CO₂-based fuels



Previous Research

- Protest potential against CCS is impacted by risk and benefit perceptions of CCS (Wallquist et al., 2012)
- Perception of mattresses as a CO2-based product is linked to health and environmental risk perception
 (Arning et al., 2018)

- Technical infrastructure and production processes
- CO₂-based jet fuel as end-product

International survey on CO₂-based aviation fuels

Sample (N = 2.187)

Germany (*n*= 543)

M = 45 years *SD* = 15.2 years

49.9% female 50.1% male

Spain (n = 545)

M = 45.4 yearsSD = 12.9 years

54.9% female 45.1% male Netherlands (n = 549)

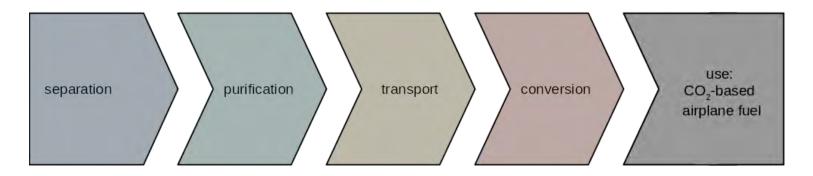
M = 44.8 years SD = 15 years

50.8% female 49.2% male

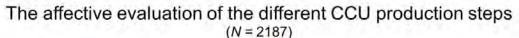
Norway (*n*= 550)

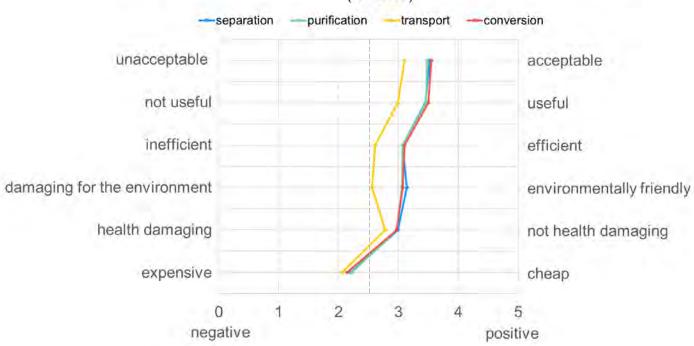
M = 45 years SD = 14.4 years

52% female 48% male

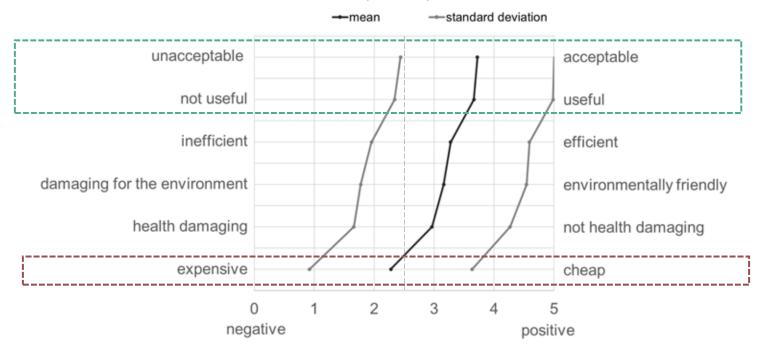


Production CO₂-based fuel using CCU





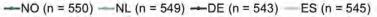
Generally, the production steps are perceived as being acceptable and useful. However, people do think it will be expensive.

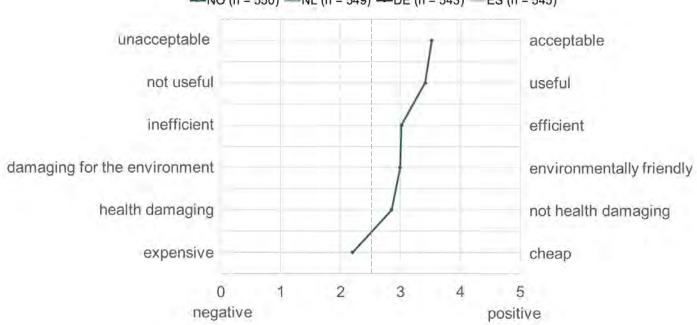


The affective evaluation of CO_2 -based fuels (N = 2187)

Perception of CO₂-based fuel:

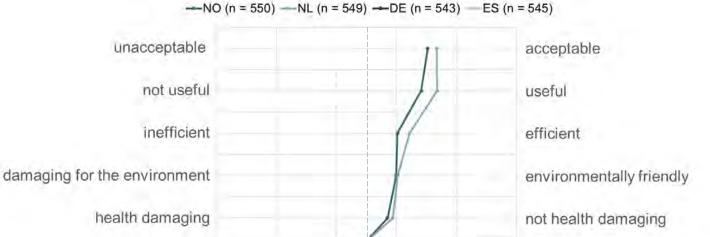
Rather acceptable, useful, efficient, environmentally and health friendly, assessment of price as rather expensive





The affective evaluation of CO₂-based fuels nationalities compared

The affective evaluation of the end-product of CO₂-based fuels was least positively perceived by the Norwegians,...

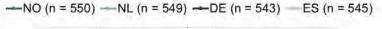


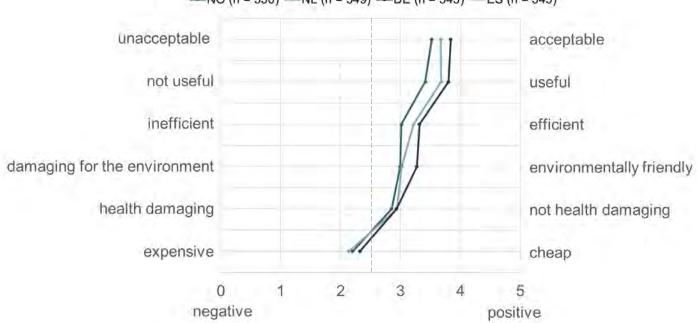
expensive

negative

The affective evaluation of CO₂-based fuels nationalities compared

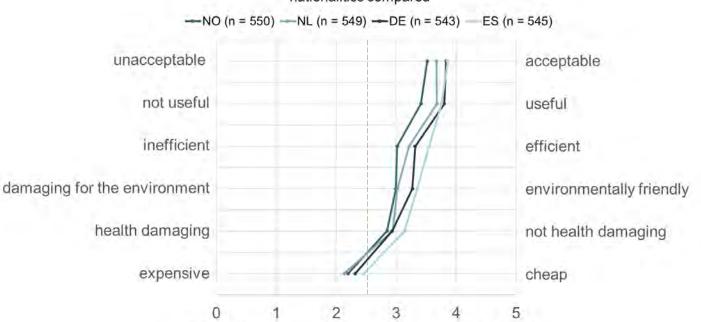
The affective evaluation of the end-product of CO₂-based fuels was least positively perceived by the Norwegians, followed by the Dutch,...


cheap


positive

The affective evaluation of CO₂-based fuels nationalities compared

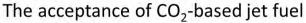
The affective evaluation of the end-product of CO₂-based fuels was least positively perceived by the Norwegians, followed by the Dutch, the Germans,...



negative

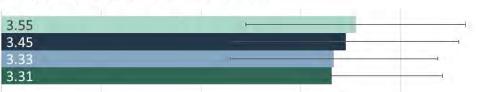
The affective evaluation of CO₂-based fuels nationalities compared

The affective evaluation of the end-product of CO₂-based fuels was least positively perceived by the Norwegians, followed by the Dutch, the Germans, and finally the Spaniards.

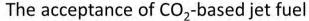


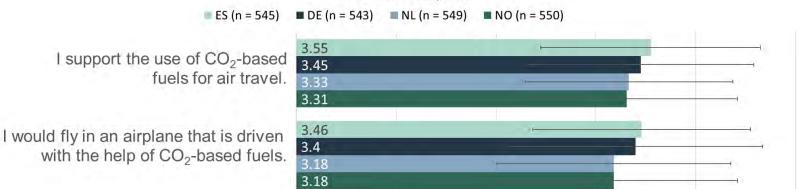
positive

Acceptance of CO₂-based jet fuel National differences



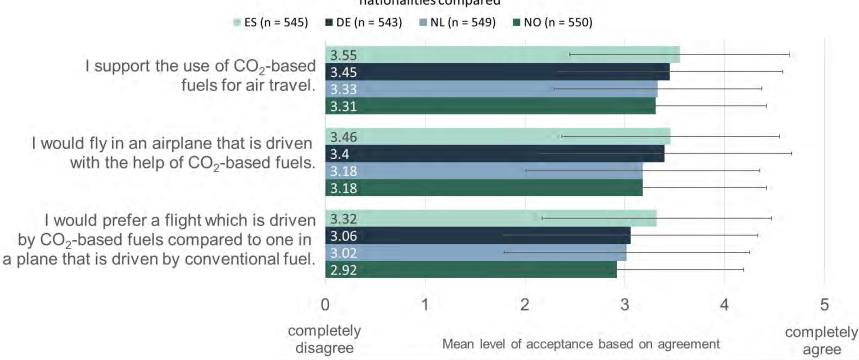
I support the use of CO₂-based fuels for air travel.



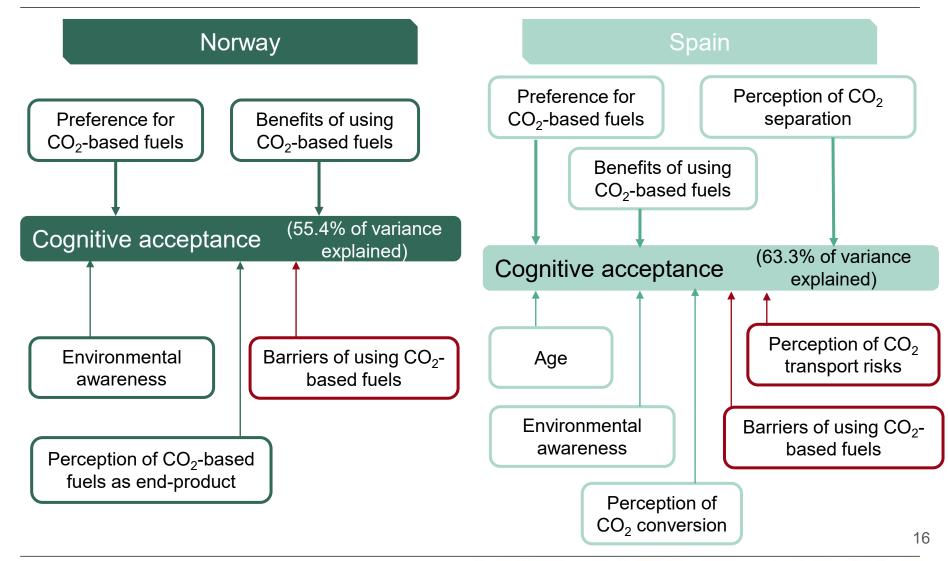


Acceptance of CO₂-based jet fuel National differences

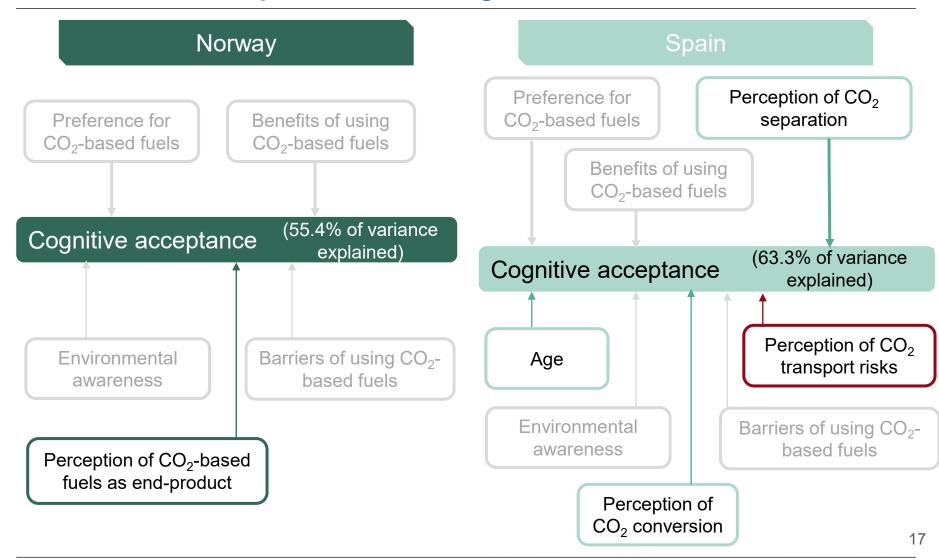




Acceptance of CO₂-based jet fuel National differences


The greatest approval and willingness to use CO₂-based fuel existed among Spanish participants, followed by Germans, Dutch and Norwegian people.

Differences in acceptance influencing factors



Differences in acceptance influencing factors

Outlook: Communication and information strategies

What increases or decreases acceptance?

Thank you for your attention!

Human and societal dimensions

Dr Niall Dunphy, University College Cork

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884266

INTERNATIONAL WORKSHOP ON CO2 CAPTURE AND UTILIZATION

TU/E - EINDHOVEN - 16-17 FEBRUARY 2021

REALISE project overview

- Demonstrating a refinery-adapted cluster-integrated strategy to enable full-chain CCUS implementation
- Horizon 2020 funded project (LC-SC3-NZE-5-2019-2020)
- 3-year duration commenced May 2020
- Working to develop means to capture up to 90 % of CO_2 from multiple sources in operating refineries

www.realiseccus.eu

@realise-ccus

Socio-political dimension of decarbonization

- Achieving the decarbonization of Europe is a key goal of the European Green deal.
- The required energy and industrial transition will both necessitate, and result in, a substantial societal transformation.
- Citizens have a crucial role to play in this transition, indirectly by accepting, supporting or resisting changes and thus influencing other policy actors or directly by consenting or refusing policy options in democratic decision-making processes.

Socio-political considerations within REALISE

- The technical and geological aspects of a CCS project are of course the primary focus of the planning and implementation phases.
- However, REALISE recognizes the importance of understanding (and appreciating)
 the social context of prospective CCS projects.
- Specific package of work which seeks to develop and in-depth understanding of the societal, socio-political and commercial contexts of CCS deployment.

WP4 Societal, socio-political and commercial context

Task 4.1 Education and public engagement best practice

Review of EPE practices

Task 4.4 Industrial context analysis

Engagement of key CCS actors through an industry club

Task 4.2 Social acceptability, societal impact

Co-development and trialing of EPE programme

Task 4.5 Public outreach activities and life-long learning

Contribute to improved societal readiness through outreach

Task 4.3 Socio-political context analysis

Exploring socio-political lessons learned from global CCS projects

Task 4.6 Synthesis report on societal readiness

T4.1 Education & public engagement best practice

- Comprises a critical review of education and public engagement (EPE) associated with large energy and related infrastructure.
- It is intended to work towards development of a framework for social acceptance of deploying CCS at an industrial site.
- Key examples of EPE identified through a literature search and via partners' networks using a snowballing approach.

T4.1 Education & public engagement best practice

- Seven EPE case studies characterised through a comprehensive desk study coupled with use of targeted informants.
 - CO2CRC Otway Project, Australia
 - Jänschwalde CCS Project, Germany
 - San Cristóbal Mine, Bolivia
 - Block Island Wind Farm, USA

- Portsmouth Energy Recovery Facility, UK
- Barendrecht CCS Project, Netherlands
- Tomakomai CCS Demonstration Project,
 Japan

• The resultant report details the case studies, outlines methods adopted, explores key challenges, and presents best practices.

Need for acceptance

- The deployment of the major infrastructure needed to realise the required energy and industrial transition can only be successful with social acceptance.
- This means acceptance by the public generally (of the technology), but also, and critically acceptance by the community which will play host to the infrastructure.
- However, the strong public opposition faced by many projects threatens to significantly slow down this transition

Social acceptance ... (or)

- The term 'social acceptance' with respect to infrastructure deployment, often implies (whether by design or otherwise) a passive acquiescence of a decision that has already been made.
- Such activities are usually concerned more with advocacy rather than decisionmaking or decision-making processes.
- So called DAD Model Decide, Announce, Defend
- (or Decide, Announce Defend, Abandon ... DADA!)

(or) ... societal acceptability

- On the other hand, 'social acceptability' refers to a project itself, it infers an effort to design (and implement) a project to be (more) agreeable to social stakeholders.
- It suggests (and arguably requires) a more participatory approach.
- This is an implied acknowledgement of societal stakeholders' legitimacy, provision for them to be earlier, and understanding that they would (be allowed to) provide real input into decision-making.

Acceptability ... 'fairness'

Perceptions of fairness play a crucial role in determining the social acceptability of infrastructure projects.

- Procedural justice: the way in which the process is structured and implemented.
- Distributional justice: how benefits and ills of the project are distributed.
- Recognition justice: acknowledgement, recognition and respect.

- You cannot engage too early
- Early and open channels of communication with the public helps build mutual trust between process leaders and the community.
- Projects benefit when stakeholders across all groups are involved in the process.
- Ideally, the local community should be involved in the process of location selection, permitting, and policy-making, as soon as a project is proposed

- 2. Value of community liaisons
- Useful to hire staff who either already have good relations with local communities, or who have the skills to develop trusting relationships with communities.
- Having someone who is a 'known entity' with at least some members in the local community is vital in building trust.
- Can also ensure issues can be dealt with promptly and before they evolve into problems.

- 3. Advantages of blended approach to communication
- Complement official formal communication with informal modes to ensure effective outreach and build/maintain trust with communities
- A blended approach to communication can contribute to fostering what Dwyer and Bidwell (2019) describe as a "chain of trust" between the process leaders and local stakeholders.

- 4. First impressions count
- Build trust through early, open & responsive communication with communities.
- Actions are interpreted through the lens of relationships a poor relationship could lead actions to be seen as hostile, whereas a hands-off approach might lead to perceptions of having something to hide.

- Provide good quality information
- Availability of high-quality tailored information builds trust and pre-empts issues.
- Effective (and trusted) communications promotes credibility of both the project itself and the developer.
- Important to develop an understanding of target audiences and implement a communications strategy which reflects their cultural and other specificities.

- 6. Listening is also part of communication
- Educating and informing can help improve understanding on particular issues, however on its own it is a very limited strategy and minimizes the values of the process.
- Real engagement requires a two-way flow of information, as it encourages the public to voice their views and interests to inform decisions.

Next steps

- Building on the developed knowledge, an EPE programme will be co-designed with community stakeholders for the Cork Harbour case study.
- The approach will take an intersectional approach, considering the sociodemographic specificities of the relevant communities, *e.g.*, gender, life stage.
- Key elements will be trialed in local communities to evaluate effectiveness, to identify areas of potential improvement, and to ascertain transferability of the programme.

Dr Niall Dunphy Director, Cleaner Production Promotion Unit University College Cork

n.dunphy@ucc.ie

@NPDunphy

INTERNATIONAL WORKSHOP ON CO2 CAPTURE AND UTILIZATION TU/e - Eindhoven - 16-17 February 2021

Session 2B (chairperson Vesna Middelkoop)

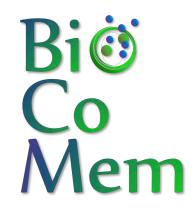
15:00-15:20 Dr. M. Sleczkowski and Dr. Pablo Ortiz - Turning gas separation membranes green with biobased block copolymers

15:20-15:40 Dr. A. Benedito - CARMOF Project: a CO₂ capture demonstrator based on membrane and solid sorbents hybrid process

15:40-16:00 Dr. R.H. Heyn - Introduction to the COZMOS project

Dr. L. Petrescu - Converge technology for efficiency methanol production with negative CO₂ emissions: energy and environmental analysis

ORGANIZED BY



SPONSORED BY

Bio-based copolymers for membrane end products for gas separations

This project has received funding from the Bio Based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme, under grant agreement No 887075.

The JU receives support from the European Union's Horizon 2020 research and innovation program and the Bio Based Industries Consortium

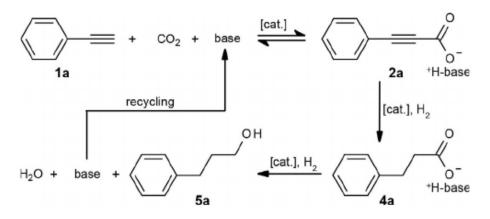
Turning gas separation membranes green with biobased block copolymers

International workshop on CO₂ capture and utilization

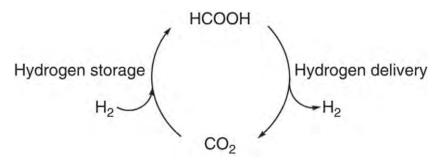
TU/e Eindhoven, 16-17th February 2021

Dr. Marcin Ślęczkowski and Assoc. Prof. dr. Katrien Bernaerts

m.sleczkowski@maastrichtuniversity.nl katrien.bernaerts@maastrichtuniversity.nl


Dr. Pablo Ortiz

pablo.ortiz@tecnalia.com

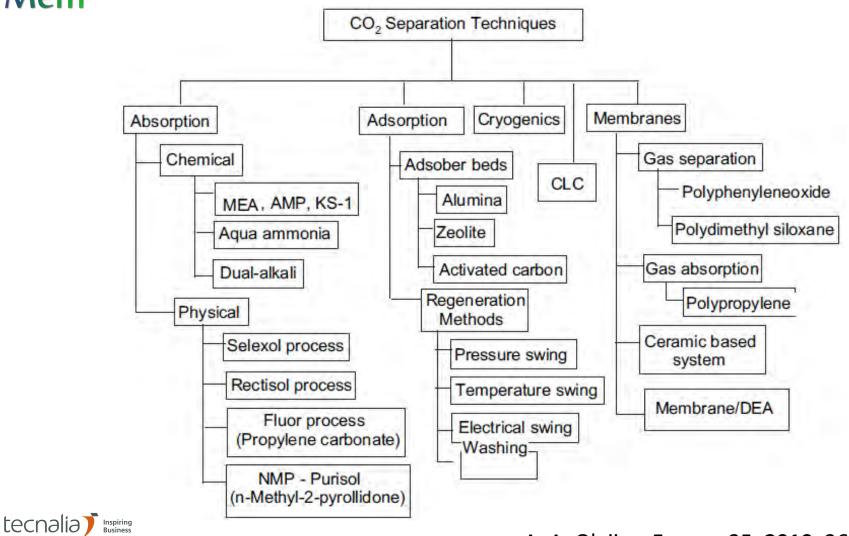

CO₂ recognized as useful raw material.

T. Wendling et al, Chem. Eur. J., 24, 2018, 6019-6024

https://www.covestro.com/en/sustainability/lighthouse-projects/co2-dreams

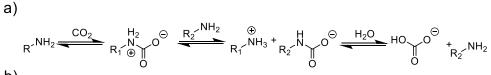
S. Moret et al, Nat Commun., 5, 2014, 4017

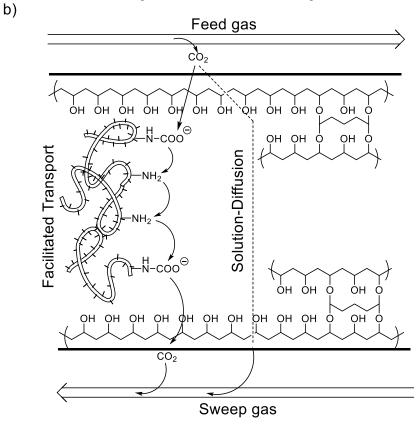
De Novo metabolic conversion of electrochemically produced formate into hydrocarbons


www.eforfuel.eu

tecnalia Inspiring Business

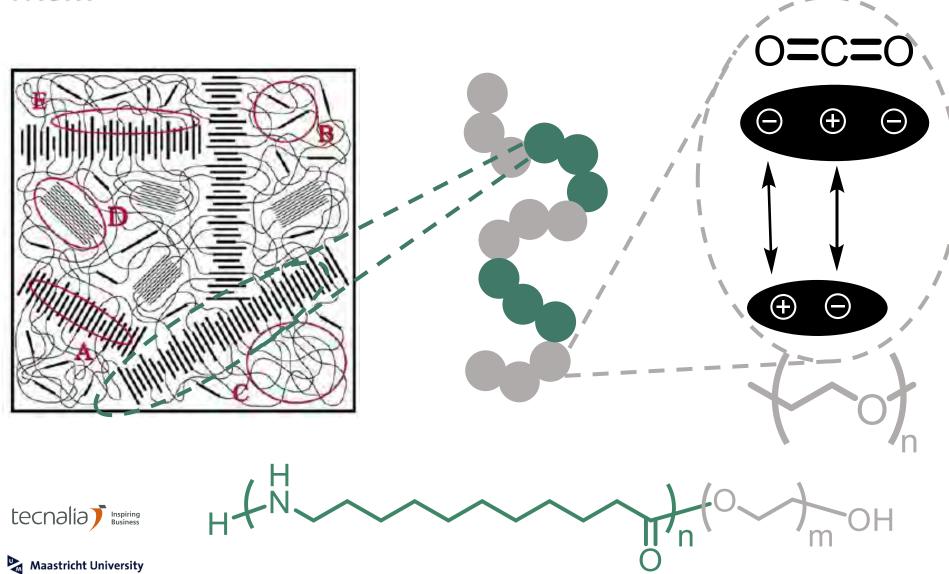
Multiple separation techniques are available.


A. A. Olajire, *Energy*, 35, **2010**, 2610-2628


Membranes utilize dipole or ionic interactions

MTR Polaris®

Cross-linked PEO of ~700 g mol⁻¹



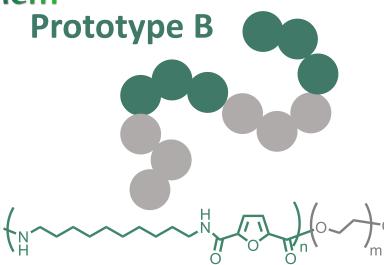
 NH_2

Synergistic effects enhance properties

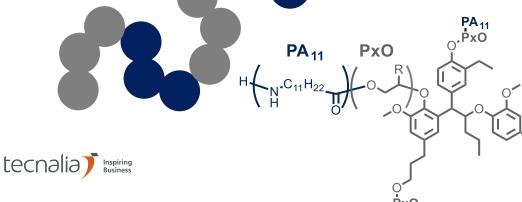
Objectives WP3 BioCoMem

Develop bio-based polyether-b-polyamide (PEBA) copolymers as precursors for gas separation membranes at TRL 5, with

- compared to commercially available PEBA PA₁₁-b-PEO
 - higher processability into monolithic hollow fiber membrane (i.e. solubility)
 - higher bio-based content
- additional performance, like
 - higher gas separation performance and/or
 - higher resistance to chemical attack (reversible crosslinking)

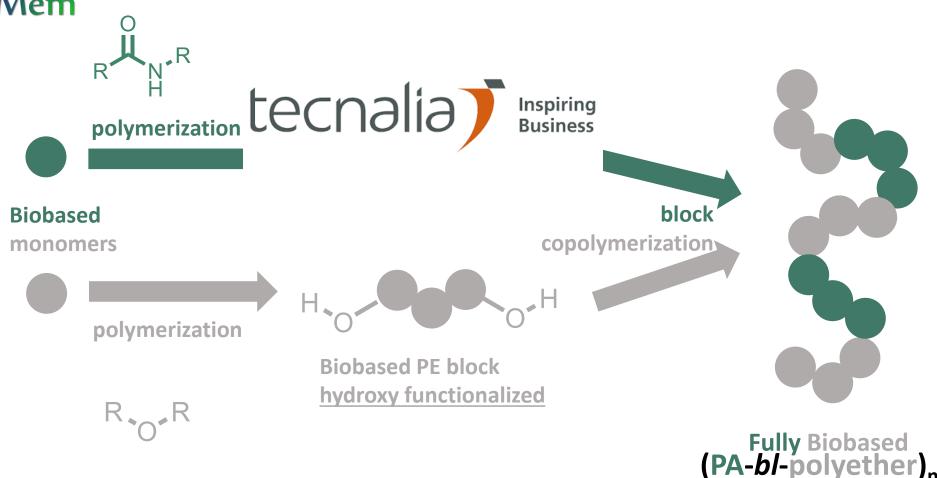


Bi@ Co Mem New, biobased block copolymers **Biobased PA block Fully Biobased PA** polymerization block **Biobased** copolymerization monomers (PA-bl-polyether)_n PE polymerization **Biobased PE block** Flu gas tecnalia) Inspiring Business **Feed** Maastricht University

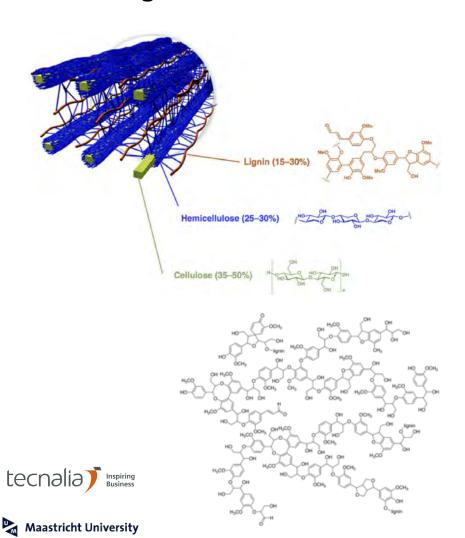

Bi@ Co Mem

Two new scalable prototypes

Two new PEBA copolymers suitable for HF membranes



Challenge: synthesis of polymer building blocks



- Structure – property screening / optimization

Maastricht University

Lignin overview

Characteristics:

- Availability
- Aromatic content

Currently lignin:

- Low solubility in organic solvents
- Low compatibility with other reagents
- Heterogeneous
- Polydisperse
- Low reactivity

Ways to overcome drawbacks:

- Using mild isolation techniques
- Depolymerizing lignin
- Fractionating lignin (solvent extraction)
- Chemically modifying it

Anionic ROP of oxiranes

PO & HOT PEGIPEO BO & OT PEGIPEO BO & OT PEGIPEO

Anionic ROP of oxiranes using lignin as initiator

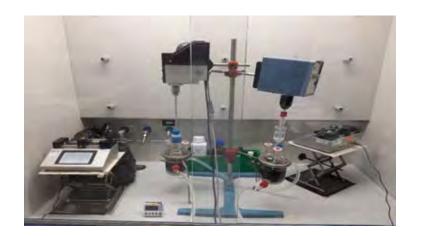
150-330°C 6-40 bar Side products Bad odor

Cellul. Chem. Technol., 2016, 50, 941; Macromol. Mater. Eng., 2005, 290,1009; Ind. Eng. Chem. Res., 2009, 48, 2583

Cationic ROP of oxiranes using lignin as initiator

WO2020/109460A1; Polym. Chem., 2020, 11, 7362-7369

Lignin screening


Mw ≈1000

Initial screening of the reaction conditions

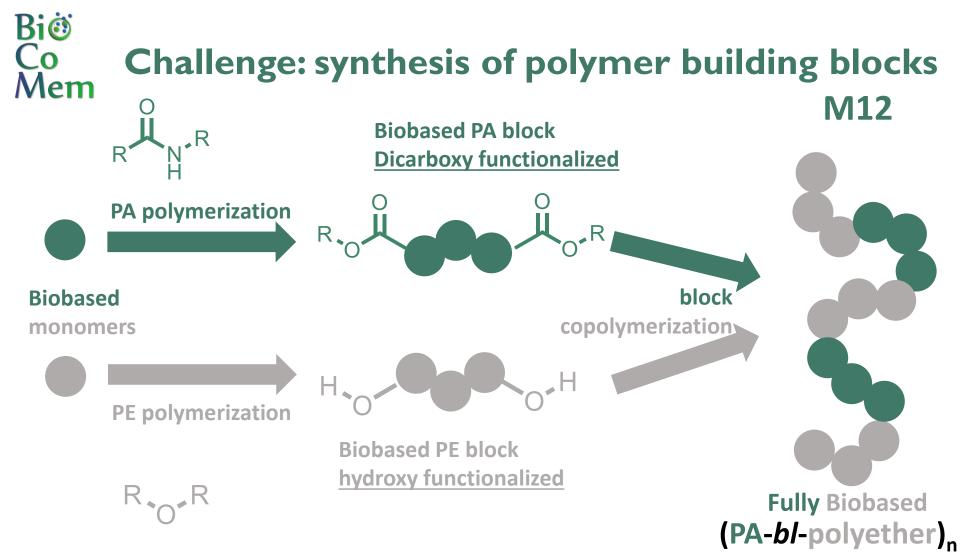
Parameters

- Oxirane
- Concentration of lignin
- Ratio butylene oxide/lignin OH

Results

- Reproducibility
- Viscosity
- Molecular weight
- Polydispersity
- OH number

Characteristics


Delivery of 3 LBP to the University of Maastricht

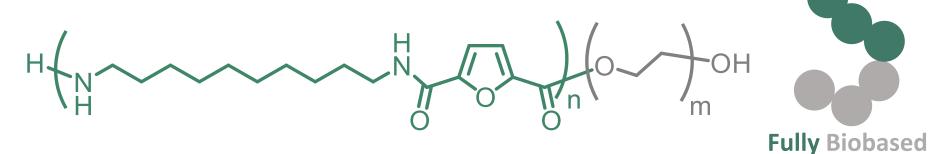
- 3x 50g
- Liquid/viscous
- From 2 different lignins
- M_w: 4000-10000 g/mol
- Lignin content (%): 20-28
- OH number: 86-110 mg KOH/g

tecnalia Synthetic methodology choice / optimization

- Structure – property screening / optimization

Maastricht University

Furan-based polyamides for block copolymers

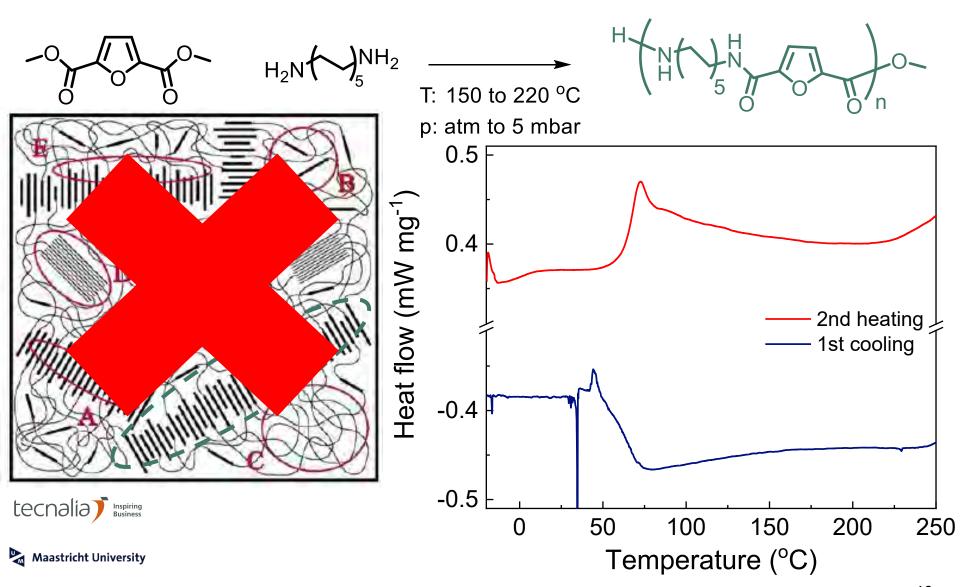

Biobased PA block
Dicarboxy functionalized

PA polymerization

Biobased PA block
Dicarboxy functionalized

Biobased monomers

- Synthetic methodology choice / optimization
- Structure property screening / optimization



M12

No melting transitions in furan-only polyamide

Bio Co Library of copolyamides with linear comonomers Mem

$$y = 2 \quad 4$$

$$Adi \quad Seb$$

$$x = 3 \quad 5$$

$$DA_6 \quad DA_{10}$$

$$x = 3, y = 4$$

$$x = 5, y = 4$$

$$x = 5, y = 4$$

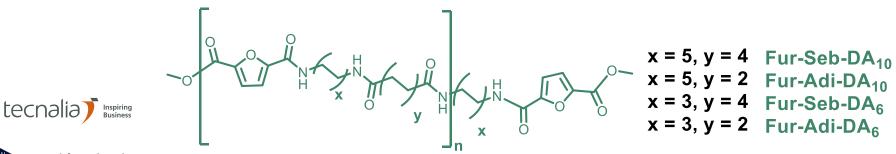
$$x = 5, y = 2$$

$$x = 5, y = 2$$

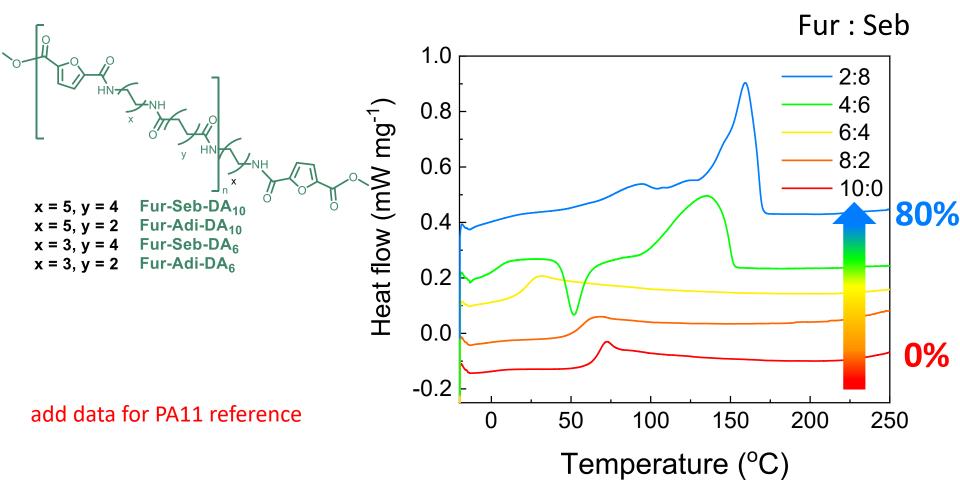
$$x = 5, y = 2$$

$$x = 3, y = 4$$

$$x = 3, y = 2$$



Desired molecular weight and AV are achieved


Feed			Results			
Furan	Sebacate	Adipate	AV	Calculated M _n [g / mol]	M _n (GPC)	Ð (GPC)
1	0		92	950		
0.8	0.2	0	112	900	4500	1.8
0.6	0.4		93	1000	3500	1.9
0.4	0.6	0	n/a	n/a	2500	2.1
0.2	0.8		91	950	2000	2.2
1		0	92	950		
0.8		0.2	98	950	3000	2.1
0.6		0.4	93	950	2000	2.2
0.4		0.6	102	1000	3000	2.3
0.2	0	0.8	94	1050	2000	2.4

Melting transitions recognized in copolyamides

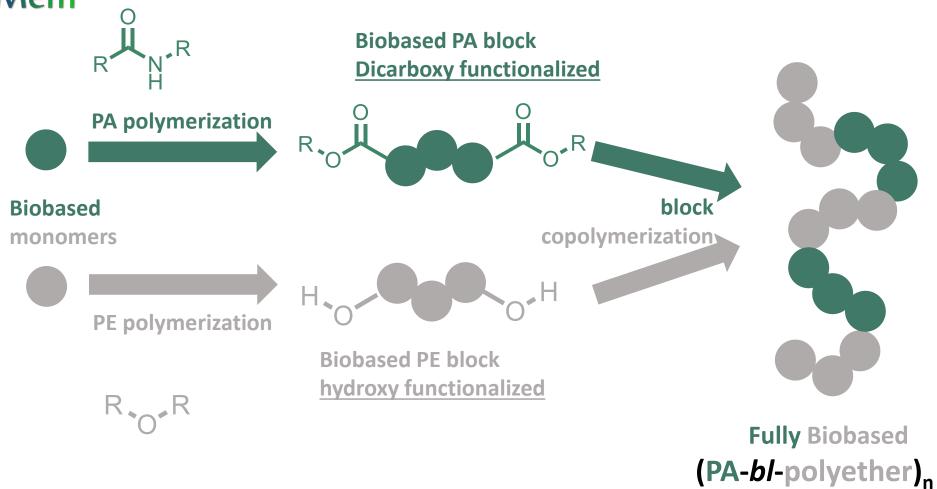
DA10

Fur-Adi-DA₆

add data for PA11 reference

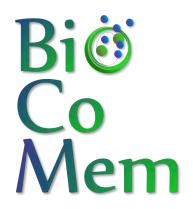
x = 3, y = 4 Fur-Seb-DA₆

DA6


x = 3, y = 2

8	Maastricht	University
M	Maastricht	University

	Furan	Sebacate	Adipate	T_{q} [°C]	T_m [°C]
	1	0	0	57	n
	0.8	0.2		52	n
	0.6	0.4	0	15	n
	0.4	0.6		1	136
	0.2	0.8	0	?	159
	1	0	0	57	n
	0.8	0	0.2	30	n
	0.6	0	0.4	17	149
	0.4	0	0.6	0	168
	0.2	0	0.8	?	218
\					
	1	0	0	90	
	0.8	0.2	0	43	n
	0.6	0.4	0	36	
	0.4	0.6	0	9	148
	0.2	0.8	0	5	174
	1	0	0	90	n
	0.8	0	0.2	57	
	0.6	0	0.4	38	n
	0.4	0	0.6	28	164
	0.2	0	0.8	?	212


Outlook: synthesis of block copolymers

Bio-based copolymers for membrane end products for gas separations

This project has received funding from the Bio Based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme, under grant agreement No 887075.

The JU receives support from the European Union's Horizon 2020 research and innovation program and the Bio Based Industries Consortium

Turning gas separation membranes green with biobased block copolymers

International workshop on CO₂ capture and utilization

TU/e Eindhoven, 16-17th February 2021

Dr. Marcin Ślęczkowski and Assoc. Prof. dr. Katrien Bernaerts

m.sleczkowski@maastrichtuniversity.nl katrien.bernaerts@maastrichtuniversity.nl

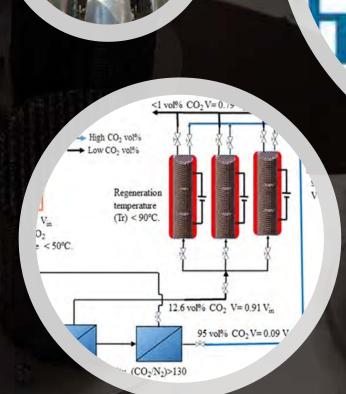
Dr. Pablo Ortiz

pablo.ortiz@tecnalia.nl

Adolfo Benedito AIMPLAS (16&17 February)

New process for efficient CO2 capture by innovative adsorbents based on modified carbon nanotubes and MOF materials.

H2020-NMBP-20-2017



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 760884. This publication reflects only the author's view and that the Commission is not responsible for any use that may be made of the information it contains.

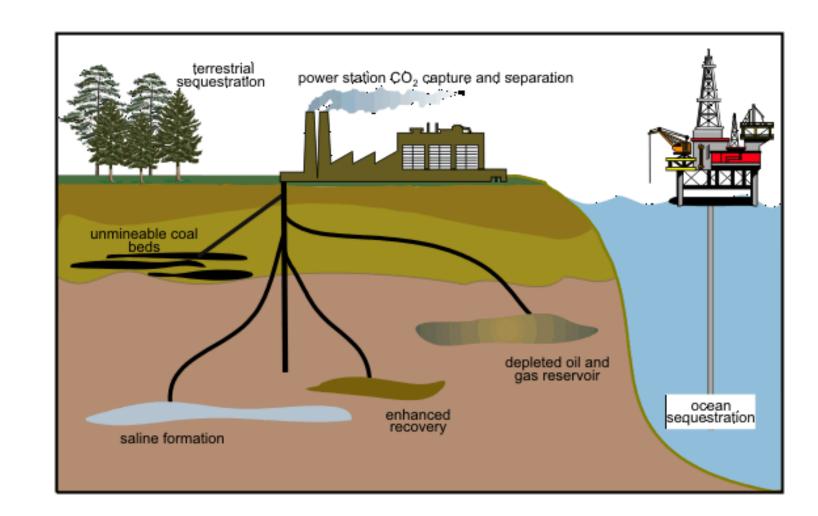
CARMOF Project

TAILOR-MADE 3D PRINTED STRUCTURES BASED ON CNT AND MOF MATERIALS FOR EFFICIENT CO2 CAPTURE

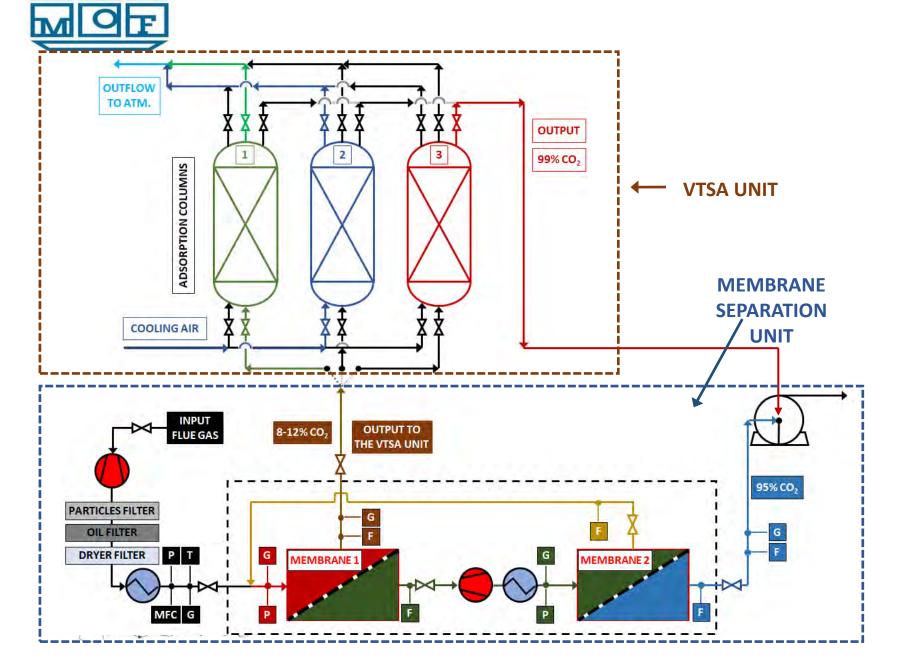
CARMOF is developing a hybrid CO₂ process combining **VTSA modules** based on 3D printed monoliths with thermoelectric regeneration and "in cascade" **membranes system**. The goal is to achieve high purity CO₂ streams from synergetic effects from both technologies

CARMOF

- Consortium consists of 15 partners from 9 countries
- Up to seven industrial pilot plants are proposed across the project – includes both manufacture and capture facilities
- €7.4 M overall budget



Carbon Capture and Storage (CCS)



- Increasing levels of atmospheric
 CO₂ are a major contributor to
 anthropogenic climate change
- CCS aims to capture CO₂ from power plants and industry and sequester it underground
- Current capture and separation technologies use organic amines
- Regeneration of these sorbents is inefficient – it can consume up to 30% of the energy produced by a power station!

CARMOF Units

CARMOF is a hybrid system based on:

- 1. VTSA Unit.
- MembraneSeparation Unit.

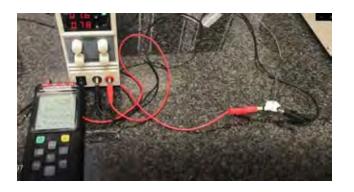
Two full *demo pilot*plants are planned for 2022 with a capacity of up to 350 tonnes CO2/year.

CARMOF OPPORTUNITY

The **Key Objectives**:

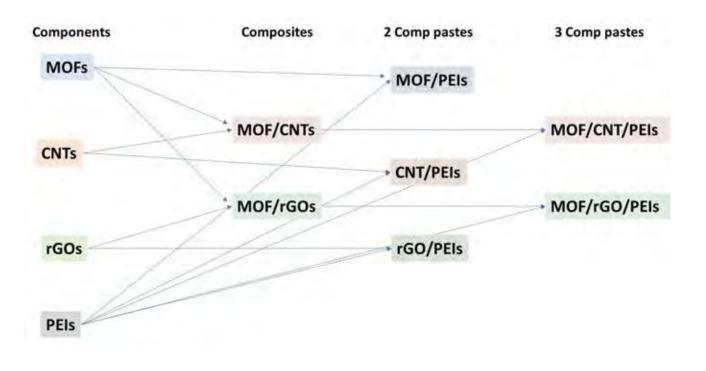
- Industrial scale-up to a **full demonstrator** consisting on hybrid membrane combined with VTSA and Joule Swing (JS) regeneration processes.
- To develop a complete two-stage separation membrane system to couple with VTSA system.
- Innovative dry sorbents for post-combustión CO2 capture based on combinations of MOFs, rGO and CNTs, supported by PEI as binder.
- To enhance manufacturing processes for these materials combination.
- To develop customized and packed monolith structures based on 3D printing.

1. VTSA unit



Innovative **dry sorbents**: Production of 3D printed monoliths of porous hybrid nanomaterials for solid phase CO2 absorption.

- Hybrid materials based on MOF, carbon nanotubes and reduced graphene oxide.
- 3D printing used to obtain monolithic structures, high packing density and low pressure drop.
- It allows efficient regeneration of saturated sorbents by heating by Joule effect and absorption at vacuum temperature (VTSA).



1. VTSA Unit

Innovative **dry sorbents**: Production of 3D printed monoliths of porous hybrid nanomaterials for solid phase CO2 absorption.

 Production optimization and upscaling of MOF component.

Production of functionalized CNT component
 MWCNTs, functionalization by oxidation (-OH, -COOH. Etc)

- Production of functionalized rGO
 rGO, carboxylic groups
- MOF/CNT and MOF/rGO chemical composites

1. VTSA Unit

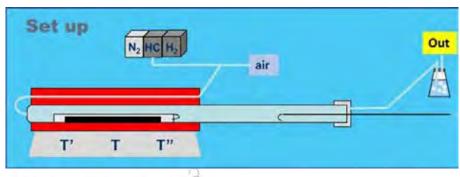
MOFs for CCS

Requirements:

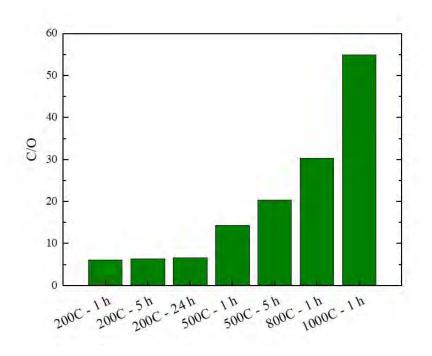
- High volumetric and gravimetric CO₂ capacity
- High CO₂ selectivity (Power station flue gas is not pure CO₂)
- High chemical and physical stability
- Minimal loss of porosity over many heating/cooling cycles
- Low cost!

Solution: CPO-27

Lab scale reactor system: 100 g MOF/day


Pilot scale reactor system: 5 Kg MOF/day STY = 266 Kg m³ day⁻¹

MWCNTs for CCS


- Oxidation of NC7000 in batch CNT synthesis unit by air/N2 mixtures.
- Effect of temperature, oxidation time, air concentration, gas Flow rate, CNt mass.
- Use of statistical tool: design of experiments.
- Characterization and analysis of results.

rGOs for CCS

Preparation of rGO with different C/O ratios.

Pastes Preparation (Mixing Process)

STEP 1

Nanocarbon material

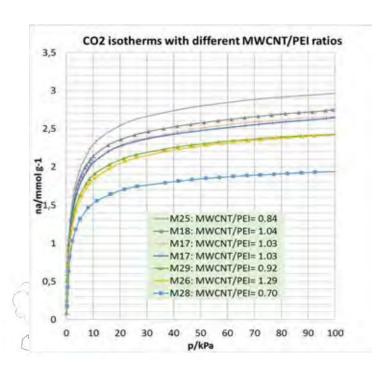
PEI

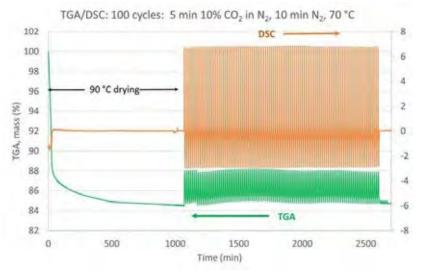
DISPERSANT AGENT

Manual stirring adding water until obtaining the right texture

STEP 2

MAIN ISSUES:


- CO2 adsorption values of the material and then after monolith 3D printing process.
- Suitable viscosity for 3D printing.
- To avoid water segregation.
- To control shrinkage through a strong optimization work.
- Homogeneous heating by thermoelectric effect (Joule Effect).



Pastes Preparation (Mixing Process)

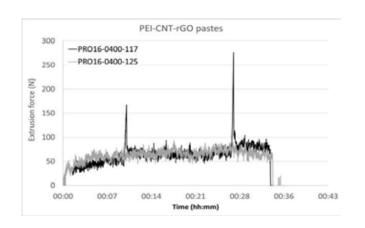
Until now best samples are MWCNT/PEI pastes, instead of 3 component.
Combinations with rGO are giving promising results.

High selectivity to CO2 over other gases as well as stable performance over high number of sorption/desorption cycles.

For the MWCNT/PEI composite, MWCNT may act in two ways:

- facilitating the diffusion of CO₂ into the sorbent structure by diffusion through or along its surface, and
- As spacer, avoiding thick aggregates of PEI leading to long diffusion paths through polymeric medium to reach sorption sites.

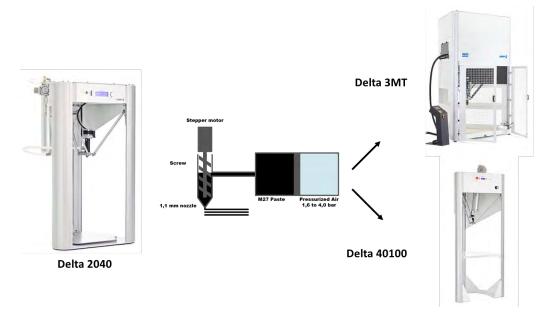
1. VTSA Unit

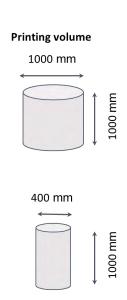


3D Printing (monoliths)

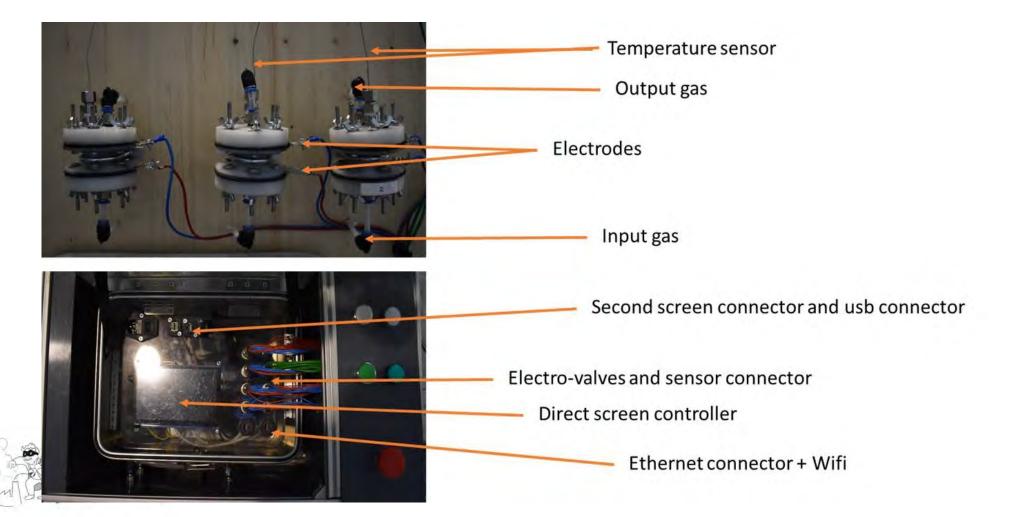
Optimization work related to avoid unstable Flow, phase segregation, bad cohesion of the paste and inhomogeneous shrinkage.

Improvements have been observed with different linkers and dispersing agents. Drop in sorption but to a lesser extent.

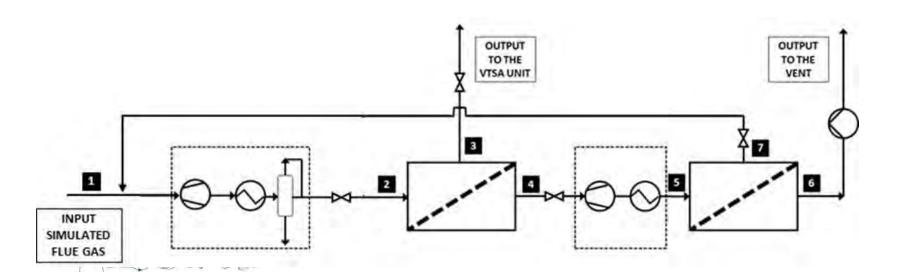



1. VTSA Unit

3D Printing (scale-up)



VTSA Benchmark. Joule Effect and sensoring process.


2. MEMBRANE Unit

Evaluation of the separation performance of the membrane unit

Investigation of the effect of recycling the retentate output of the 2nd membrane module into the gas feed introduced into the membrane cascade by conducting experimental runs using two commercial membrane modules in series and a dry mixture of 15.6 v/v% CO₂ − 84.4 v/v% N₂ as a feed.

The two-stage membrane section has been tested successfully according to work programme using polyimide commercial membranes

Thank you

Introduction to the COZMOS project

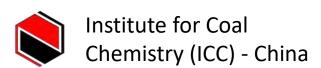
<u>Richard H. Heyn</u>, COZMOS Dissemination and Communication Manager SINTEF Industry, Oslo, Norway

COZMOS - Efficient CO₂ conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS

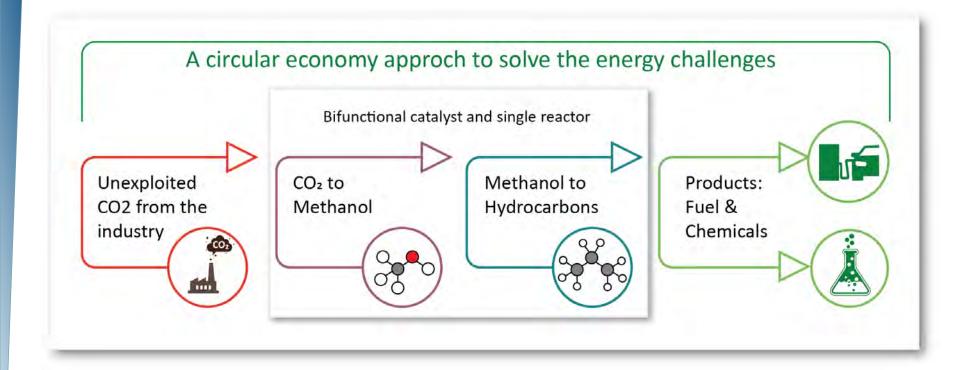
- Four year project (01.05.2019 30.04.2023)
- Coordinator: Prof. Unni Olsbye, University of Oslo

Industry partners

RTO partners

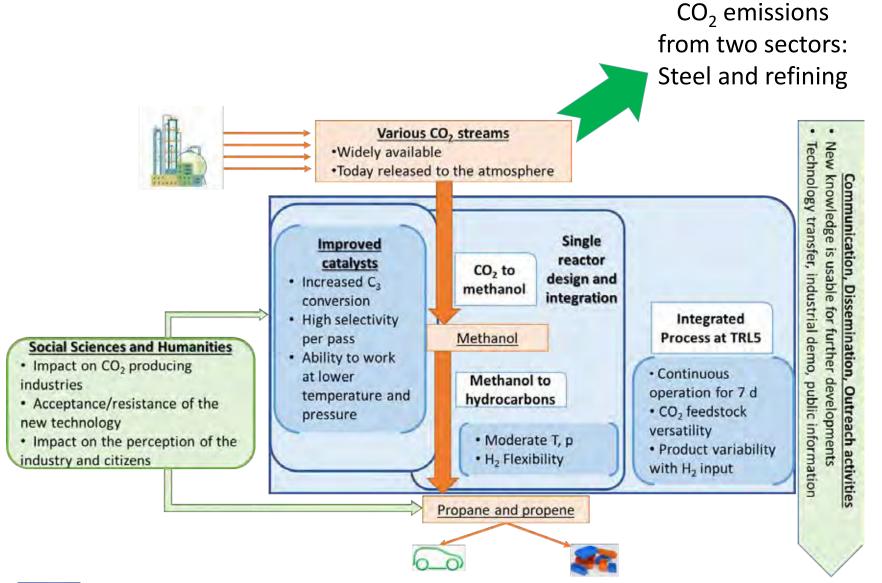


Foreign partners



King Abdullah University of Science and Technology (KAUST) – Saudi Ararbia

COZMOS in a nutshell


COZMOS Work Packages

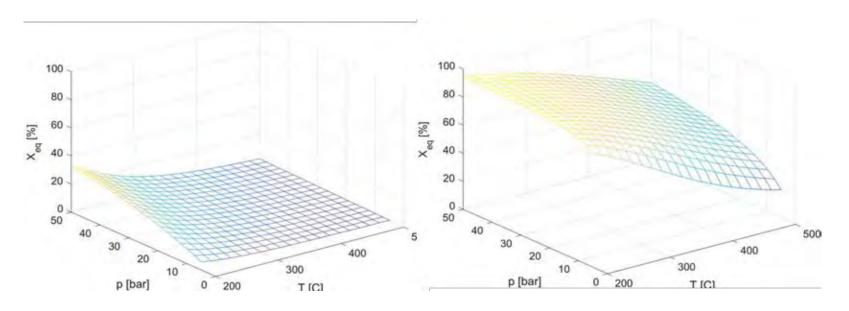
- WP1 Optimization of catalysts (and process conditions) for cascade reactions
 - Partners: Univ. Oslo, Haldor-Topsoe, CNRS, SINTEF, Univ. Torino, ICC, KAUST
- WP2 Process design and optimization
 - Partners: Linde, Haldor-Topsoe, Tata Steel, Tüpraş
- WP3 Demonstration (TRL5)
 - Partners: Tüpraş, Univ. Torino, Tata Steel, Linde, Haldor-Topsoe
- WP4 LCA, TEA and social aspects
 - Partners: Tata Steel, Univ. Sheffield, Tüpraş
- WP5 Communication, dissemination, outreach and exploitation
 - Partners: SINTEF, Tata Steel, Linde, Univ. Sheffield
- WP6 Ethics
- WP7 Management

Project overview

Project Objectives and Innovations

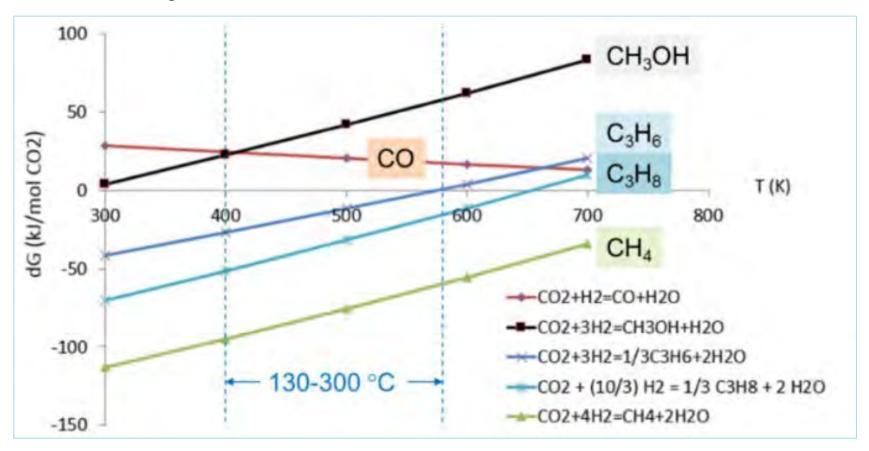
- Development of an energy efficient, economically viable, environmentally friendly and socially acceptable process
- Development, optimization and upscaling of a combined catalyst for hydrogenation of CO₂ to C₃ products
- Determination of optimal process conditions, i.e., optimal heat and pressure management with minimal separation
- Overall integration and validation in a relevant environment (TRL 5)
- Innovation 1: Tailor-made bifunctional catalysts for maximizing the yield, working at low temperature and pressure for both steps, with feeds with various compositions
- Innovation 2: Single reactor and optimized global process design for operation under conditions that are optimal from an energetic and technoeconomic perspective, with efficient heat and pressure management, minimized separation and optimized recycling

Impact


- Decrease in CO₂ emissions by 1.9 t_{CO2} / t_{C3 product}
 - DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V., Low carbon energy and feedstock for the European chemical industry, 2017
- Convert 0.4 Mt CO₂/yr in 2030, 2.2 Mt CO₂/yr from 2034
- Flexible solutions for local requirements and different industries.
- Key aspect is availability of H₂
 - Must be made from renewable energies with no (appreciable) carbon footprint
- Scenario 1 Lots of renewable energy and CO₂, but remotely located
 - Utilize excess renewable energy and make propane, which is a transportable energy vector (heating, cooking, transport)
- Scenario 2 Limited renewable energy/high demand for H₂, located within established process industry infrastructure
 - Synthesize propene for use within the chemical industry

Thermodynamics – Le Chatelier is our friend

- All CO₂ chemistry has thermodynamic limitations
 - Hydrogenation of CO₂ to MeOH included
- If a second reaction converting MeOH is combined with CO₂ hydrogenation,
 CO₂ conversion should increase



Maximum achievable per-pass (equilibrium) conversion of CO₂ to C₃ products Left: Convential two-reactor system. Right: COZMOS one-reactor process

Thermodynamics is our favor

Gibbs free energy vs. Temperature for CO₂ hydrogenation reactions

• Hydrogenation of CO_2 to C_3 products is thermodynamically favorable in a readily accessible temperature/pressure window

Publications thus far

On the conversion of CO₂ to value added products over composite PdZn and H-ZSM-5 catalysts: excess Zn over Pd, a compromise or a penalty?

- From Univ. Oslo, Univ. Torino, CNRS
- Catal. Sci. Technol. 2020, 10, 4373-4385
- A toroidal Zr70 oxysulfate cluster and its diverse packing structures
 - From Univ. Oslo
 - Angew. Chem. Int. Ed 2020, 48, 21397–21402
- Selective Conversion of CO₂ into Propene and Butene
 - From ICC and Univ. Oslo
 - Chem 2020, 6, 3344-3363
- CO₂ hydrogenation to methanol and hydrocarbons over bifunctional Zn-doped ZrO₂/Zeolite catalysts
 - From Univ. Torino, KAUST, Univ. Oslo
 - Accepted, Catal. Sci. Technol.
- Analytical Review of Life-Cycle Environmental Impacts of Carbon Capture and Utilization Technologies
 - From Univ. Sheffield, TATA Steel
 - Accepted, ChemSusChem

Conclusions

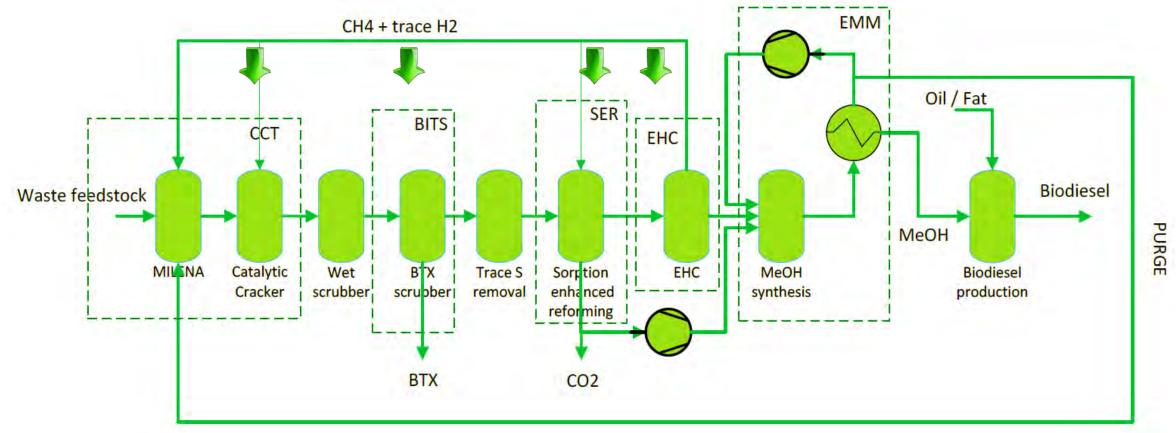
- The COZMOS project aims to combine two catalytic processes into a single catalyst and process for the conversion of CO₂ into C₃ hydrocarbons
- The goal is to exploit Le Chatelier's principle to drive equilibrium-limited CO₂ conversions to higher, industrially relevant levels.
- The conversion of CO_2 to C_3 products is thermodynamically accessible in an industrially relevant temperature window.
- Important to optimize process conditions to minimize recycle and energy requirements
- Vision is a flexible process that can vary the C₃ product to fit the needs and limitations of different locations.

CONVERGE technology for efficient methanol production: Energy and Environmental analysis

Petrescu Letitia

Objectives

» Green methanol for biofuel production using waste feedstock as raw-material



- » The waste feedstock (from 4 different regions) will be characterized and used in process modeling and simulation tasks; its supply chain will represent important data for LCA
- » The optimum economic layout will be identified for CONVERGE technology
- » LCA will compare the environmental impacts of CONVERGE to other green methanol production processes
- » Evaluation of social impact

CONVERGE concept

» Combines five innovative processes

Figure 1. CONVERGE process flowsheet

CONVERGE main units

ССТ	BITS	SER	EHC	ЕММ
 Catalytic cracking of tars from an indirectly heated gasifier to below green C8 	 Recovery of refinery products including aromatics for green C6-C8 fraction (BTX) 	 Sorption-Enhanced Reforming of C1-C6 for excess-carbon removal, and H2 production 	 » Highly efficient electrochemical compression of green H2 with by-product fuel 	 Enhanced Methanol Membrane to ensure efficient green biodiesel production
 Advantage: Removes the separation of high molecular weight tars from downstream processes, also allowing other by-product fuels, i.e. CH4 and methanol purge to fire the gasification and SER units 	producer gas to perform hydrodesulphurization (HDS), and create an extra revenue stream that will also receive positive	production	combination with SER and EMM compression	 Advantage: Due to in situ separation of inhibition products the catalyst for methanol production operates more efficiently as the composition remains further away from equilibrium

CONVERGE - Advantages

Technical

- » \u200430% of energy losses related to biodiesel production → \u201712% in production;
- » Syngas treatment: ⊅5% in C/H₂ purity
 → ⊅17% overall carbon usage;
- » SER: reduce the H₂ production and CO₂ separation from 2 MJ/kgCO₂ down to 1.2 MJ/kgCO₂;
- » EHC: reduce the purification and compression work from 16 MJ/kgH2 down to 12 MJ/kgH2;
- » Enhanced Membrane Methanol synthesis: single pass conversion >33%
 → size reduction of the methanol reactor;

Economic

- » 15% \searrow of CAPEX for the overall process;

Environmental

- » Reduction of CO₂ emissions by 0.2 kgCO₂/kgMeOH as consequence of higher production efficiency;
- » Reduce the biomass transportation costs as consequence of the process flexibility and supply chain evaluations for 4 distinct geographical regions;

WP5 - Details

WP objectives

• Definition of the Base Case (BC) and CONVERGE Case

Steps to reach the objectives

- Identification of possible raw-materials for BC and CONVERGE Case
- Identification of the main blocks for BC and CONVERGE Case
- Identification of the best operating conditions of various sub-units
- Construction of BC and CONVERGE Case process flow-diagram

Tools to reach the objective

- Process flow-modelling tools (i.e. Aspen Plus)
- Validation of the models
- Discussions, side-meetings, e-mails, skype calls

Results obtained

- Detailed mass & heat balances for BC and and CONVERGE Case Technical KPIs (e.g. cold gas efficiency)
- Plants economics (e.g. levelized cost of fuel)

WP 5 Objectives

Technical analysis

Base case

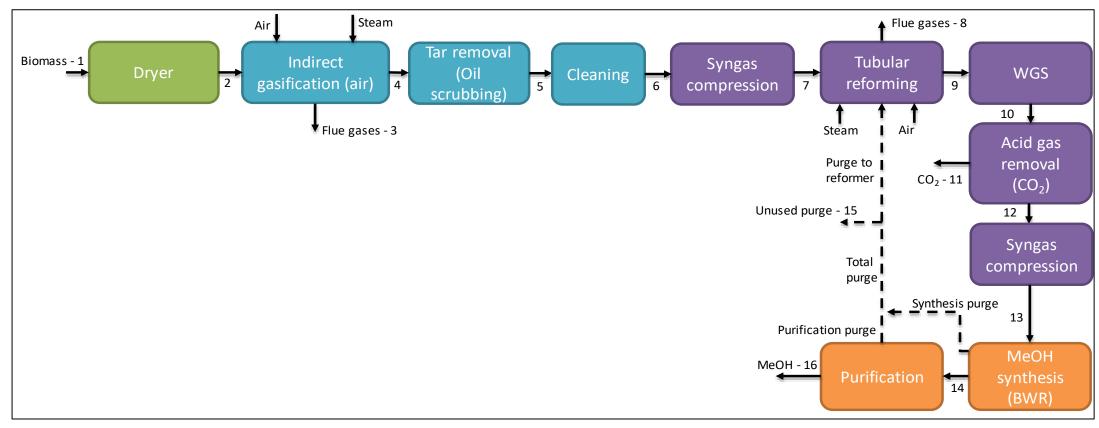


Figure 2. Simplified process flow-sheet of the Base Case

Technical analysis – Case studies

CONVERGE Case

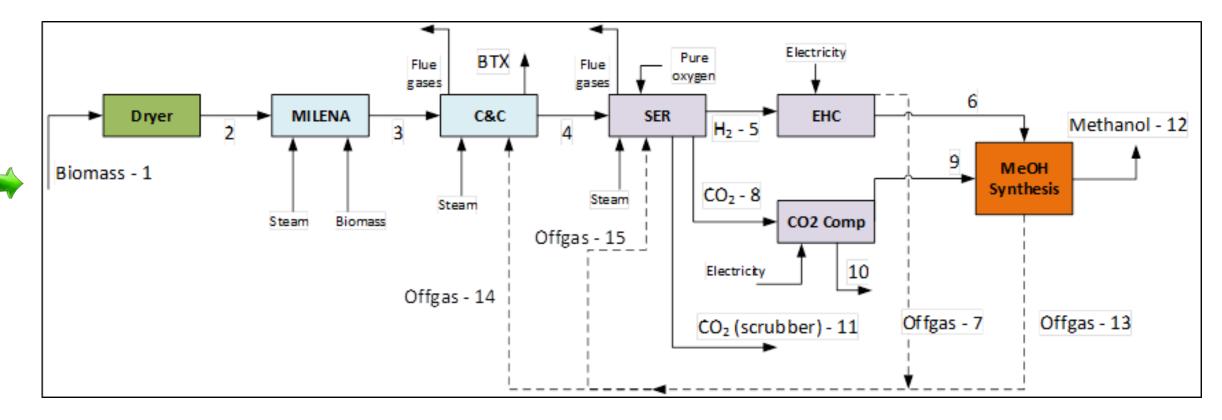


Figure 3. Simplified process flow-sheet of the CONVERGE Case

Technical analysis

Table 1. Case studies comparison

PROCESS	BASE CASE (BC)	CONVERGE CASE
Biomass drying	Tube bundle drier	Tube bundle drier
Biomass conversion	Indirect gasification (MILENA)	Indirect gasification (MILENA)
(Syngas production)	Atmospheric pressure	Atmospheric pressure
	Air and steam	Air and steam
Tar removal	Oil scrubbing (OLGA)	Catalytic Cracking
	Water scrubbing	Water scrubbing
	Compression up to 22 bar	-
Syngas cleaning and	Tubular reforming	-
conditioning	WGS bypassed	-
	Acid gas removal - MDEA	SER+CO ₂ compression (up to 80 bar)
	Compression up to 72 bar	ECC (compression up to 80 bar)
Methanol synthesis	Boiling water reactor	Membrane reactor
Methanol purification	Stripping of light gasses and water separation	Stripping of light gasses and water separation

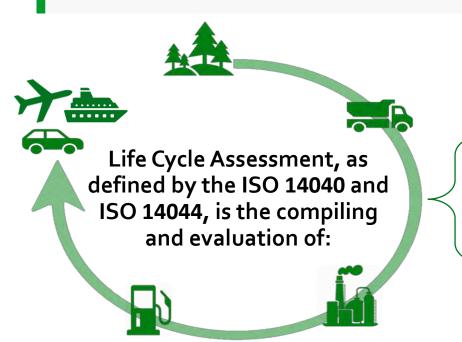
Technical analysis

Table 2. Examples of possible biomass

	Forest residues	Cereal straw	Residual lignin
С	50.71	48.12	57.80
Н	6.08	6.57	6.20
0	42.84	48.18	33.83
N	0.38	0.45	0.80
S	0.06	0.07	0.13
CI	0.09	0.30	0.00
Fixed C	17.93	21.02	27.80
Volatile matter	82.07	78.98	72.20
Ash	1.00	6.70	0.10
Moisture	35.00	7.80	52.00
LHV [MJ/kg]	11.55	15.37	11.01

Table 3. Global plant performance

CGE section		Base Case	CONVERGE	CONVERGE Optimized
Global (methanol)		58.59%	42.55%	49.43%
Global (methanol +E	BTX)	-	51.45%	58.75%
MILENA	Gasifier	82.73%	84.41%	84.43%
Cleaning		99.79%	97.89%	94.96%
Reformer	SER	104.79%	88.34%	94.27%
WGS+CO2 separation		99.98%	-	-
Methanol synthesis		68.36%	82.64%	81.72%
Methanol purification		97.84%		



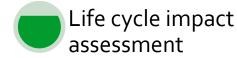
Technical and economic analysis for BC

 Table 4. Case studies comparison

Technical KPI	BASE CASE (BC)			
Plant capacity		10 MW _{LHV}	$100~\mathrm{MW_{LHV}}$	300 MW _{LHV}
MeOH production	ton/d	25.1	251	753
CO ₂ separated	ton/d	27.7	277	831
CGE global	%	58.6		
Costs	BASE CASE (BC)			
Total Capital Investment	M€	39.1	206	424
	M€/y	7.09	43.8	101.6
Total yearly cost	€/ton	1010	525	406
LCOF	€/MWh	183	95	73

Environmental analysis

- the inputs
- the outputs and
- potential environmental impacts of a product/system during its lifetime.

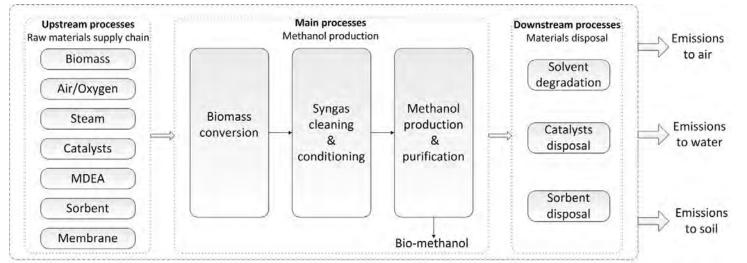

» Life Cycle Assessment Steps

Goal and scope definition

Life cycle inventory

Interpretation

Environmental analysis



Goal and scope definition

» **Goal:** Evaluate and compare the environmental burden of biomethanol production proposed in the CONVERGE technology with other technologies for bio-methanol production.

» Scope:

boundary conditions

- functional unit one tone of MeOH
- plant lifetime 20 years
- plant location Europe: Sweden

Life cycle inventory

» Quantification of inputs and outputs for a product/process throughout its life cycle

Raw materials
Air emissions
Water emissions
Soil emissions

Assessment Method

ReCiPe Impact

Life cycle impact assessment 🧠

Global Warming Potential (GWP)

Freshwater Eutrophication Potential (FEP)

Ozone Depletion Potential (ODP)

Fossil fuel Depletion Potential (FDP)

Freshwater Ecotoxicity Potential (FETP)

Human Toxicity Potential (HTP)

Mineral Depletion Potential (MDP)

Photochemical Oxidant Formation Potential (POFP)

Terrestrial Ecotoxicity Potential (TETP)

Environmental analysis

Table 5. LCA Results

KPI	Units	Base Case	CONVERGE
GWP	kg CO2 eq./ tMeOH	1305.4	1470.47
ODP*10 ⁹	kg CFC-11 eq./ tMeOH	5.85	4.89
FDP	kg oil eq./ tMeOH	6.15	8.35
FETP	kg 1,4-DB eq./ tMeOH	0.51	0.19
НТР	kg 1,4-DB eq./ tMeOH	36.69	7.06
MDP	kg Fe eq./ tMeOH	2.51	2.81
POFP	kg NMVOC/ tMeOH	0.15	0.149
TETP *10 ³	kg 1,4-DB eq./ tMeOH	9.18	4.61

Concluding remarks

- » Different types of biomass are/will be considered in the CONVERGE project for biomass transformation into bio-methanol
- » The attention was focused on forest residues biomass
- » Cereal straw and residual lignin will be considered in future evaluations
- » Calculation of technical KPIs for CONVERGE concept have been performed
- » Economic analysis is an on-going task
- » Environmental impact was evaluated for the main process (base case and CONVERGE concept) but upstream and downstream processes should be included in the analysis (on-going task)

Thank you for your attention!

letitia.petrescu@ubbcluj.ro

Acknowledgements

The CONVERGE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 818135

INTERNATIONAL WORKSHOP ON CO, CAPTURE AND UTILIZATION TU/E - EINDHOVEN - 16-17 FEBRUARY 2021

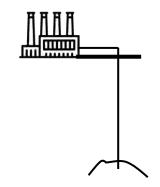
Opening & Plenary Sessions (chairperson Fernanda Neira D'Angelo)

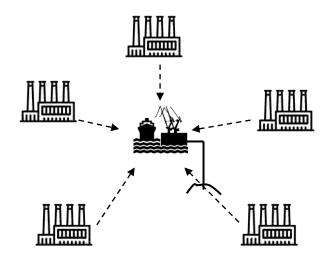
9:30-10:00 All coordinators - Introduction to projects

10:00-11:00 Dr. K. Bakke - Northern Lights – concept, plans and future

ORGANIZED BY

SPONSORED BY





Agenda

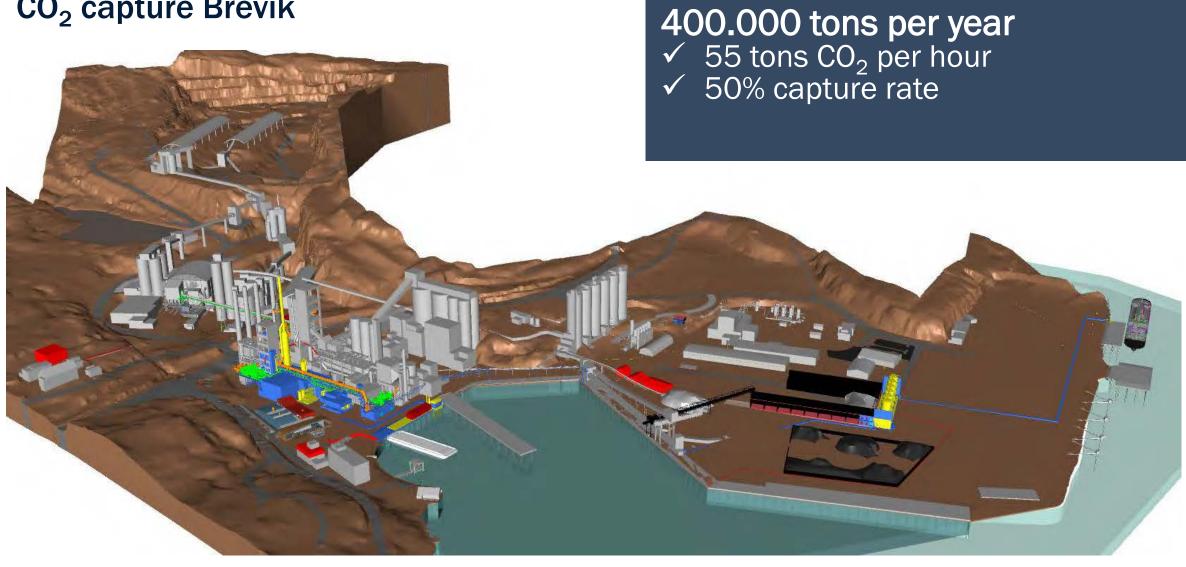
- Introduction
- Separating source and sink
- Longship
- What is Northern Lights?
- Storage experience
- Is there a business opportunity?
- Some challenges
- Summary
- Q&A

SEPARATING SOURCE AND SINK

SEPARATING SOURCE AND SINK

NORTHERN LIGHTS

Injection and storage


CO2 received and temporarily stored

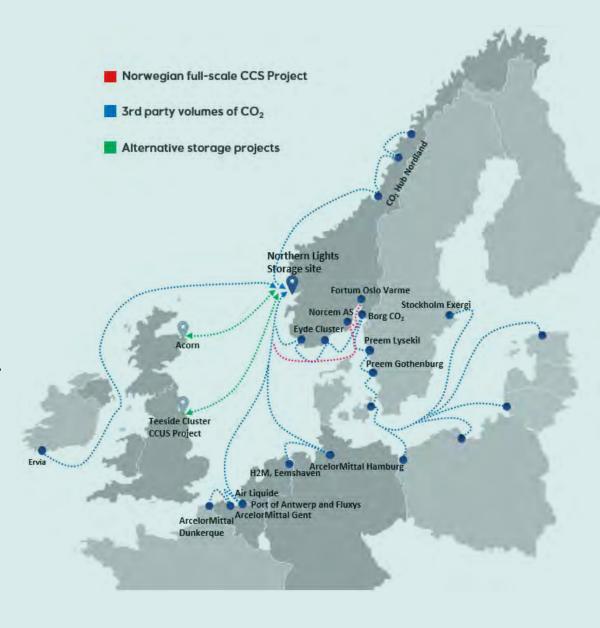
Longship in summary

- Norcem facilities with start-up in 2024
- Partial funding of Fortum Oslo varme (FOV)
 - A FID must be made by FOV within three months of EU Innovation fund announcing awards in the second round, but no later than 31. December 2024
- Northern Lights
 - Facility scope with 1,5 mtpa capacity
 - 2 ships

Demonstration plant

CO₂ TRANSPORT BY SHIP

Cargo Systems for CO₂


'LPG standard' design
Proven concept based on food industry model

Initially two ships

Transport capacity scalable with number of ships

A fleet is required for the planned scale-up – perfect for driving ship technology and fuels development

Northern Lights landanlegg i Øygarden

Onshore plant

Civil works started

Preparations for jetty construction

Project office under construction

Detail engineering of plant started

Fabrication of plant starts spring 2022

Pipeline and subsea facilities

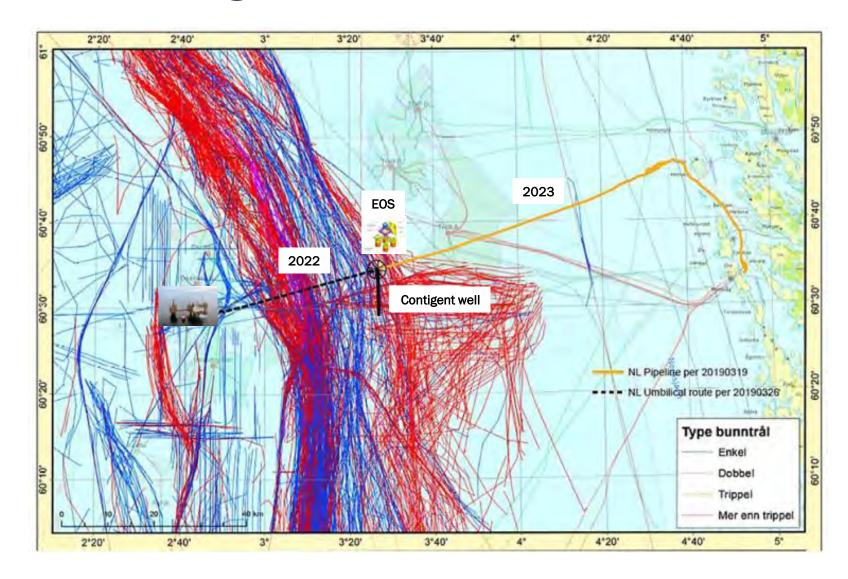
Template installed in 2019, well drilled in 2020

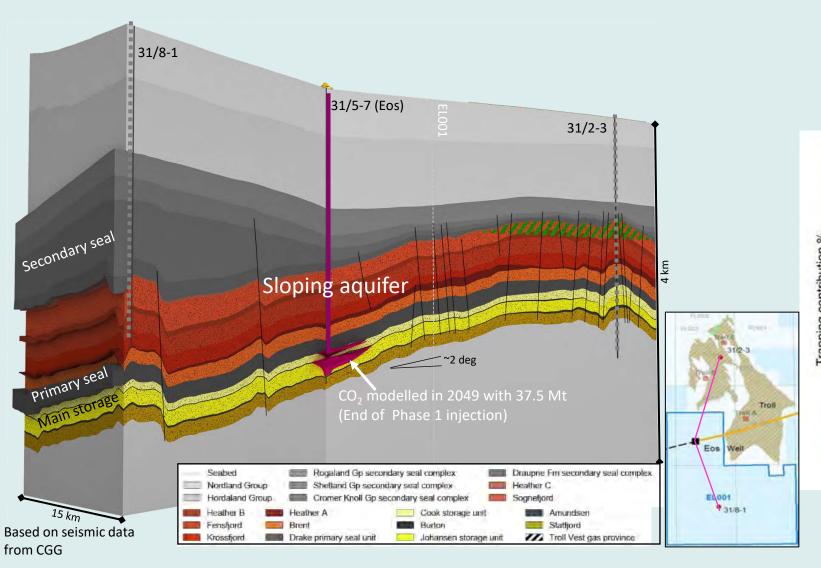
Fabrication of umbilical started

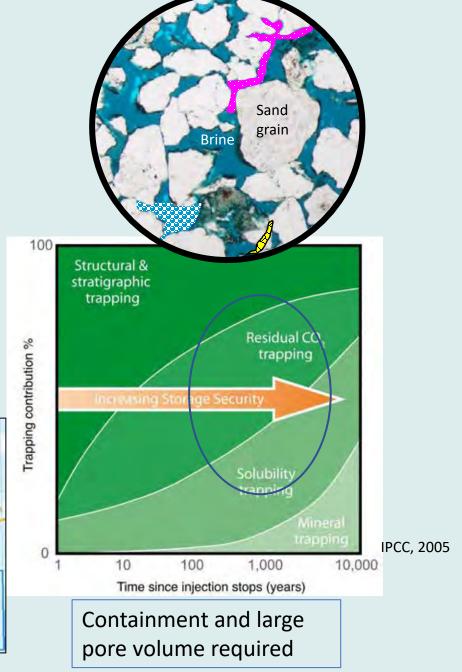
Fabrication of power and fibre optic control cable started

Engineering of topsides modifications at Oseberg started

Engineering of pipelay started

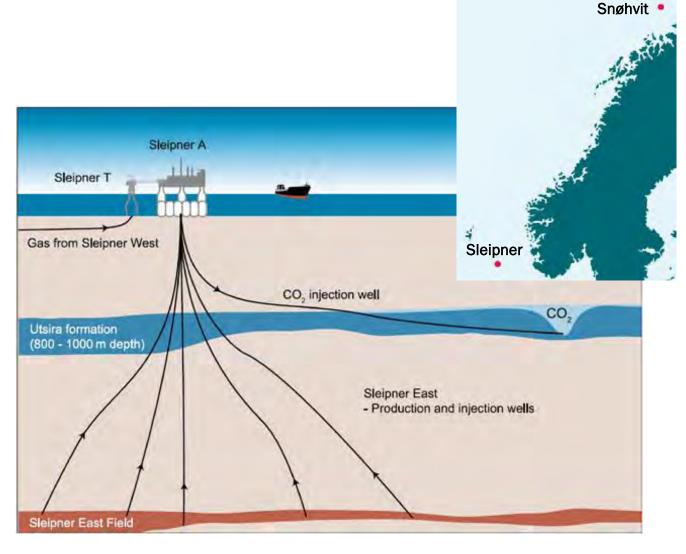






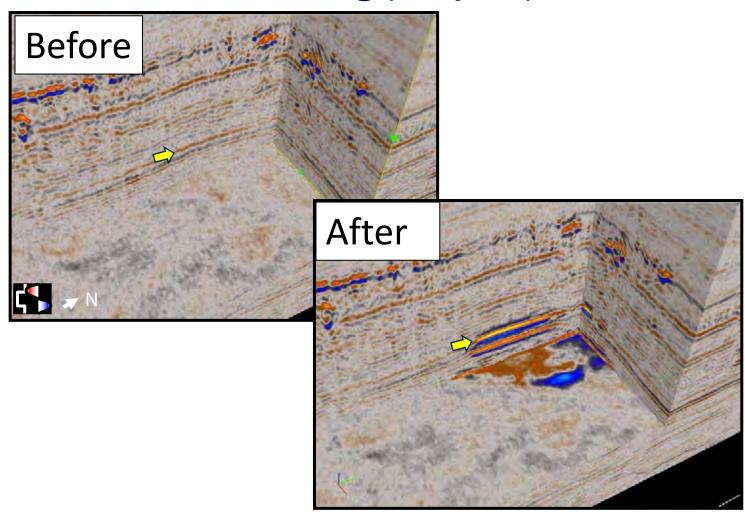
Northern Lighs infrastructure versus fisheries

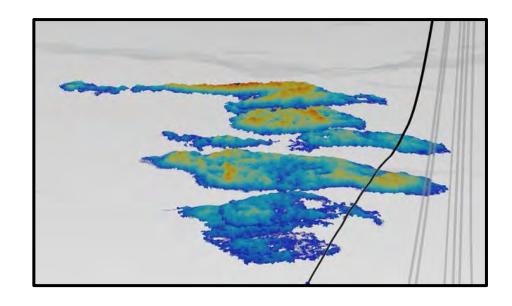
Northern Lights storage concept


Industrial experience - Norway

Sleipner:

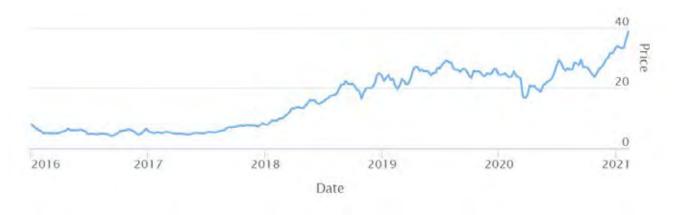
- Injection since 1996
- More than 18 mill t CO₂ stored*
- Frequent monitoring, many academic projects
- Data set publicly available

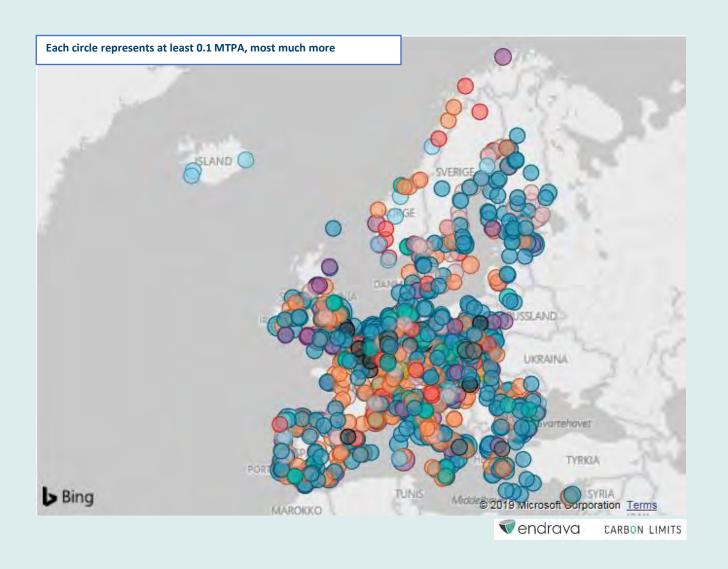

Snøhvit:


- Injection since 2008
- More than 6 mill t CO₂ stored*
- Subsea facilities

^{*:} status end of 2019

Seismic monitoring (Sleipner)

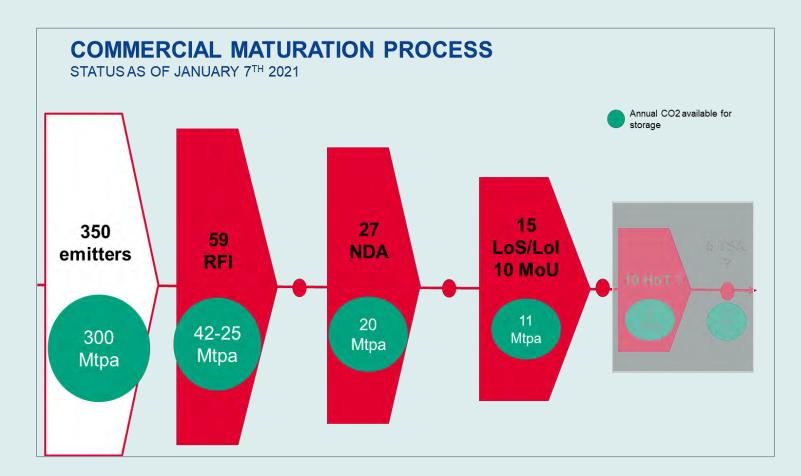




https://davidappell.blogspot.com/2019/04/eek-carbon-tax.html

https://ember-climate.org/data/carbon-price-viewer/

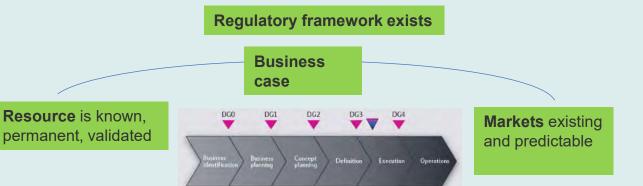
IS THERE A BUSINESS OPPORTUNITY?


Sectors with the largest potential:

- Waste incineration and waste to energy
- Cement
- Biomass and biofuel
- Refineries
- Steel
- Natural gas
 - Hydrogen
 - Electricity
- Fertilizers
- Data centers
- Direct Air Capture

Business development funnel

MoU


- Heidelberg Group (cement), Germany
- Fortum Group (WtE); Finland
- Ervia (natural gas supply), Ireland
- Air Liquide (chemicals, hydrogen), **Belgium**
- Stockholm Exergi (WtE), Sweden
- ArcelorMittal (steel and iron), Luxemburg
- Preem (refineries and fuels, hydrogen), Sweden
- ETH Zürich, Switzerland
- Microsoft, USA

Northern Lights seen from conventional oil & gas project perspective

Normal oil & gas

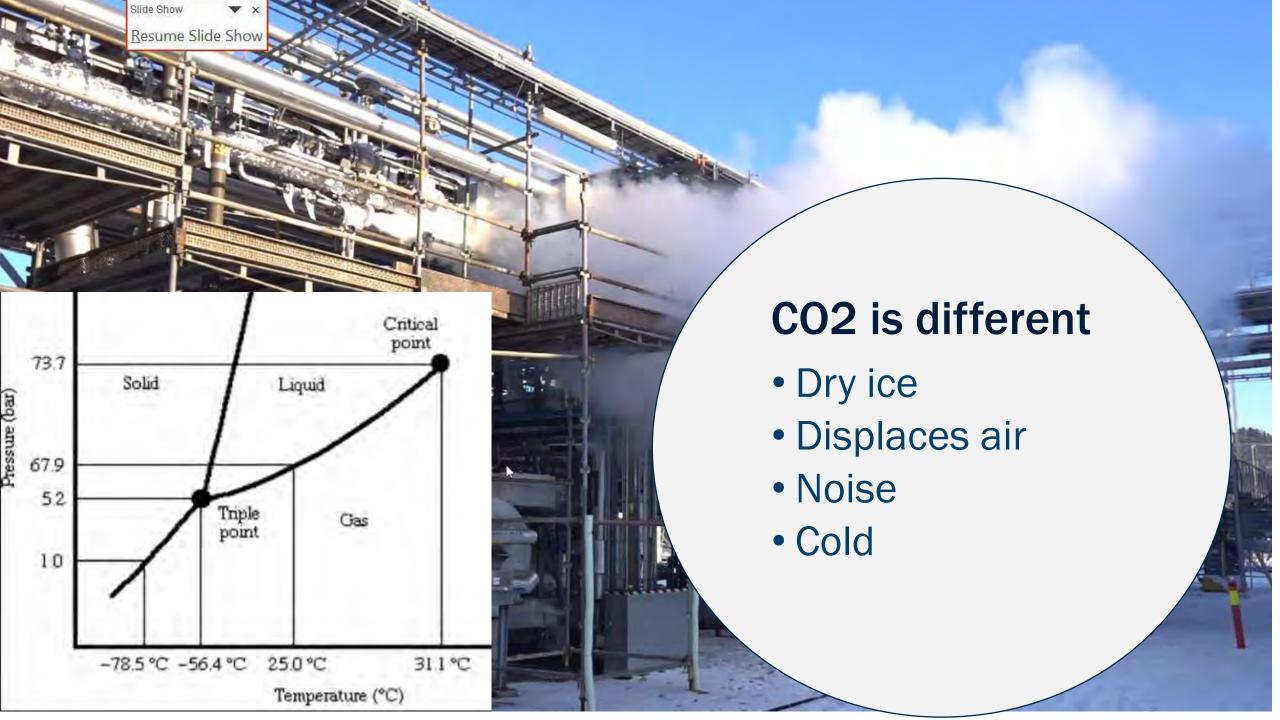
Develop project to harvest business case

- Technical maturation with DGs
- Risks identified
- · Concept freeze early
- Not schedule driven

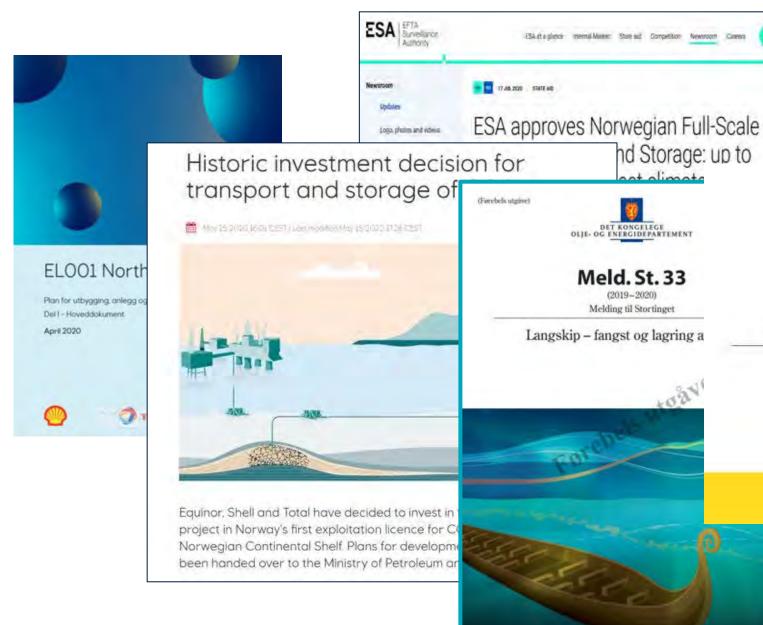
Northern Lights

Regulatory framework not in place

Resource is NOT known, validated: Not reservoir


- Not CO2

No normal markets


Develop project to build future markets

- Technical maturation with DGs
- Identified risks, and many
- Concept partly frozen early (not SSV)
- Schedule driven

The process behind us

Prop. 1 S

(2020 - 2021)

DET KONGELEGE OLJE- OG ENERGIDEPARTEMENT

Meld. St. 33

(2019 - 2020)

Melding til Stortinget

Langskip - fangst og lagring a

Proposisjon til Stortinget (forslag til stortingsvedtak)

FOR BUDSJETTÄRET 2021 Statsbudsjettet

Enighet om statsbudsjettet 2021

mellom Høyre, Fremskrittspartiel, Venstre og Kristelig Folkeparti

Beskrivelse	Påløpt endring	Bokfort endring
Skatte- og avgiftsledelser	4 514 500 000	4 171 500 000
Okte utgifter	B 752 844 000	8 187 844 000
Økte utgifter som følge av avtale om LTP	303 600 000	253 000 000
Sum ekte utgifter og skatte- og avgiftslettelser	13 570 944 000	12 612 344 000
Skattie- og avgiftsledelser, filleggsnummer	2 816 400 000	2 681 400 000
Økte utgifler, blieggsnummer	1 891 000 000	1 891 000 000
Sum økte utgifter og skatte- og avgiftslettelser, tilleggsnummer	4 707 400 000	4 572 400 000
SUM TOTALT ØKTE UTGIFTER OG SKATTE- OG AVGIFTSLETTELSE	18 278 344 000	17 184 744 000
Irindekning/reduserte utgifter	-3 842 600 000	-3 642 600 000
SUM TOTALT (SVEKKET BUDSJETTBALANSE)	14 635 744 000	13 542 144 000

STATUS

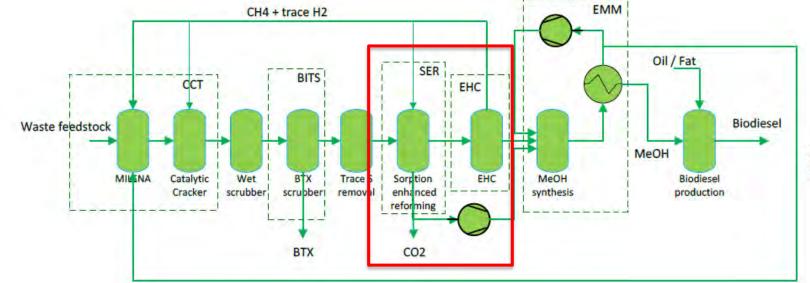
Project

- Majority of execution contracts awarded
- Execution started
- Site office in Øygarden in operation
- Start up mid-2024 aligned with Norcem's plans

New company - «Northern Lights JV DA»


- Formally established on 5th Feb 21
- Regulatory obstacles passed (competitive clarifications in EU)

Research for a better future

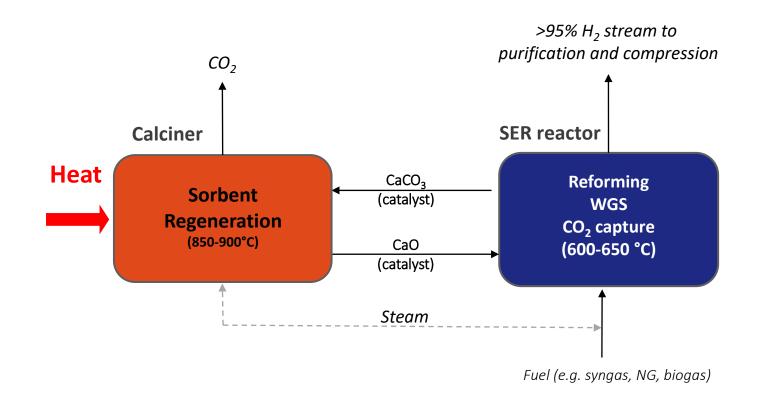

CONVERGE: CarbON Valorisation in Energy-efficient Green fuels

SER and SEWGS for CO2 capture: preliminary experimental results

CONVERGE WP3: Objectives

The main objective of WP3 is to validate the integration of the SER and EHC technologies at TRL5 in relevant operating conditions adapted to the CONVERGE concept with the following specific targets:

- Reduce the energy consumption for hydrogen production, CO₂ removal and compression to 1.2 MJ/kg CO₂
 - Optimization of the CO₂ sorbent material used in the SER process
 - Development of new improved catalytic materials suited for the CONVERGE syngas
- Extract and compress H₂ at >99.5% purity, 50 bar and at a primary energy consumption of 12 MJ/kg H₂
- Operate the SER and EHC for 500 hours on C1-C6 containing emulated syngas feed at 10 Nm³/hr H₂ production


PURGE

Sorption Enhanced reforming (SER)

SER integrates Reforming, Water-Gas Shift (WGS) and CO₂ separation through the addition of a high temperature CaO-based CO₂ solid sorbent

SER Concept scheme

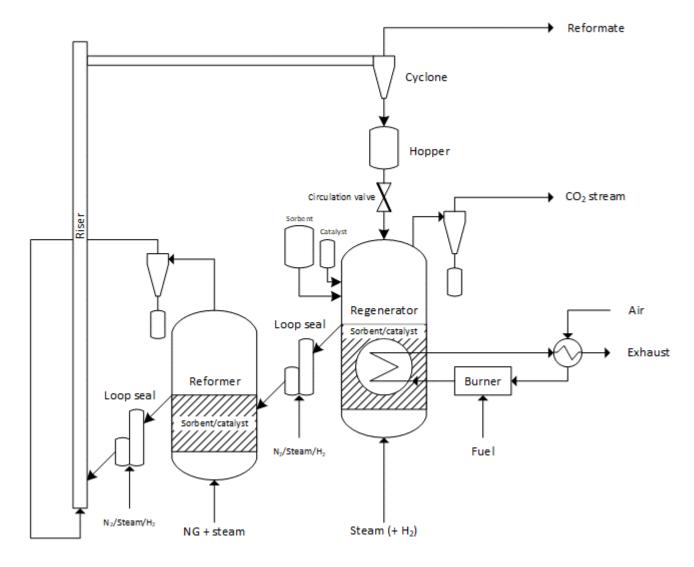
Feed Gas after CCT

H2 - 41.9%

CO - 10.0%

CO2 - 32.4%

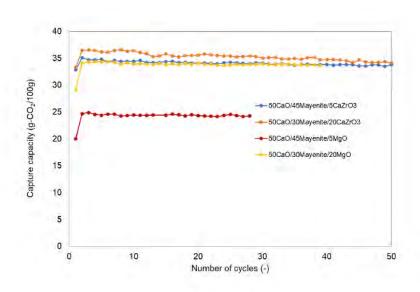
CH4 - 10.5%

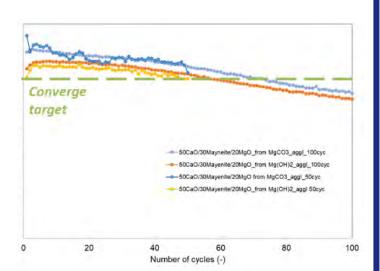

C2H4 - 4.4%

N2 - 0.9%

SER reactor technology developed at IFE Dual Bubbling Fluidized Bed (DBFB) reactor system

- Dual bubbling fluidized bed reactor (DBFB)
 - 2 FB-reactors coupled with loopseals and riser
 - Continuous mode.
 - Bubbling regime
 - Circulation rate adjusted with slide valve

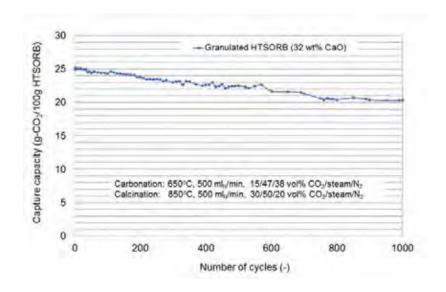




IFE

CO₂ sorbent material used in the SER process

 added a thermally stable dopant (ZrO₂, MgO and Fe₂O₃) in the CaO/Mayenite sorbent to increase its stability

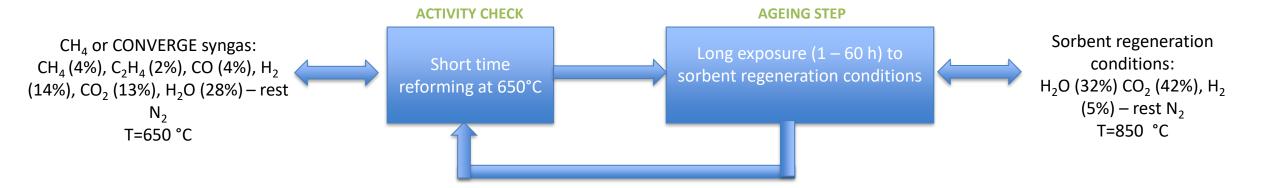


Sorbent powders: stable activity and capacity target achieved in some cases

100 cycles test: capacity decreases more severely. The addition of thermally stable agents does not allow reaching the target

 HTSORB – Chosen for experiments

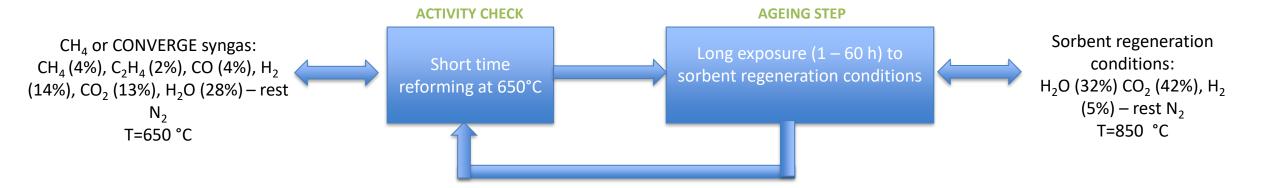
Long-term sorption capacity: stabilized at < 20 g-CO₂/100g sorbent after 1000 carbonation-calcination cycles


Materials Development and Optimization

Development of catalyst tailored for SER process– Stability test

SER Catalyst testing and aging

New catalytic set-up designed and constructed within CONVERGE project for "stability" and "kinetic" tests.


Materials Development and Optimization

Development of catalyst tailored for SER process– Stability test

SER Catalyst testing and aging

New catalytic set-up designed and constructed within CONVERGE project for "stability" and "kinetic" tests.

Materials Development and Optimization

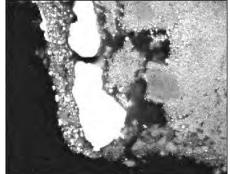
IFE

Development of catalyst tailored for SER process – Stability test

Stability tests:

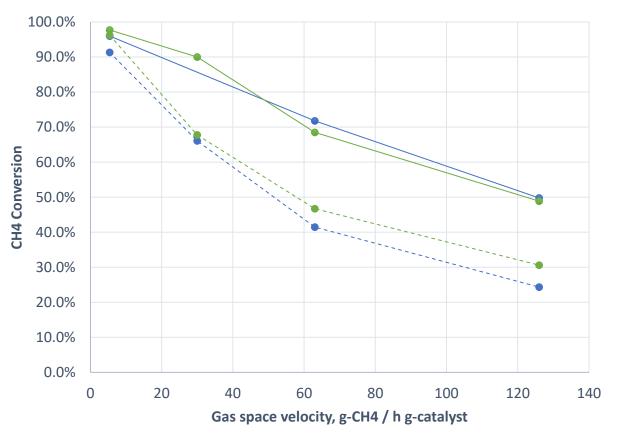
Screening a matrix of 15-20 newly synthesized materials

- 5 different supports
- 5-10-15-20 wt % Ni


Satisfactory results, higher activity than commercial reference for some of the prepared catalysts

SEM characterization after 60h of test:

- Nickel sintering well evident in the commercial catalyst
- No evidence of nickel sintering but total nickel loading to be decreased to avoid nickel «envelop» effect



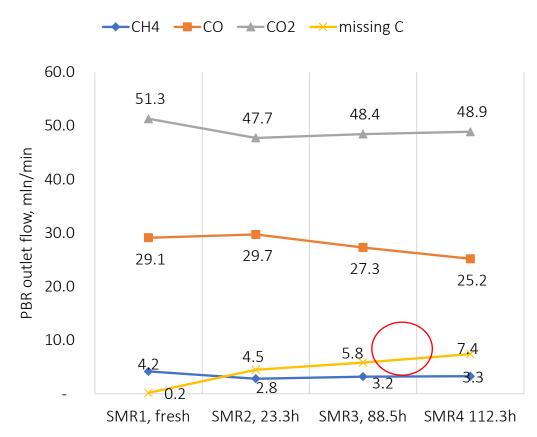
Development of catalyst tailored for SER process—Stability test in SMR conditions (Aged 60h)

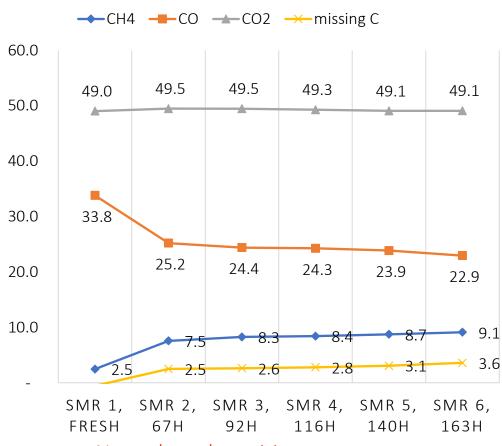
45.0% 40.0% 35.0% 30.0% Concentration 25.0% 20.0% 15.0% Fresh Commercial CAT -- -- Aged Commercial CAT 10.0% Fresh Converge CAT 5.0% ---- Aged Converge CAT 0.0% 20 100 120 140 Gas space velocity, g-CH4 / h g-catalyst

CH₄ conversion

Converge CAT presents better CH₄ conversion after aging. Difference more apparent in higher GSV.

H₂ concentration


 Converge CAT presents better H₂ selectivity fresh and after aging


Development of catalyst tailored for SER process– Stability test

Commercial CAT

- Increase in carbon deposition. (TPO confirmed)
- Experiment stop after 120h aging High pressure drop

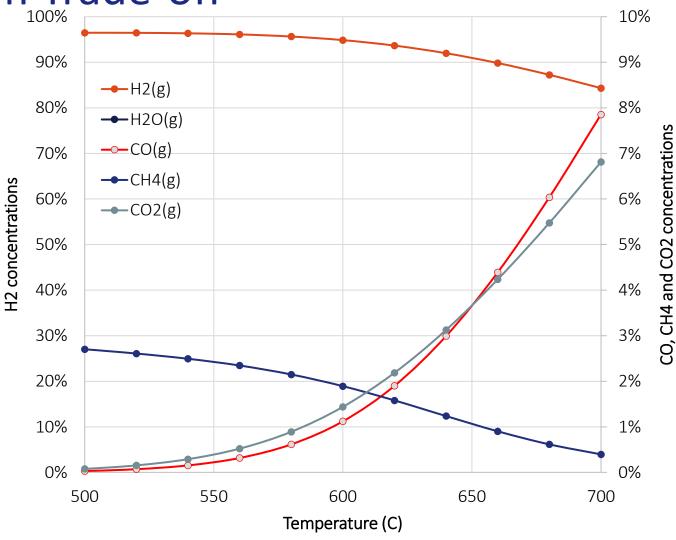
Converge CAT

- No carbon deposition
- Experiment stable during 160h aging

FBR Tests
SER/SEWGS – Equilibrium Trade-off

Process Parameters

<u>Temperature:</u> 650°C <u>Pressure:</u> 0.5 barg


Fluidization velocity: 0.036 m/s

Feedstock and Materials

Gas Feed: (mol%): 41.9% H2, 10.0% CO, 32.4%

CO2, 10.5% CH4, 4.4% C2H4, 0.9% N2

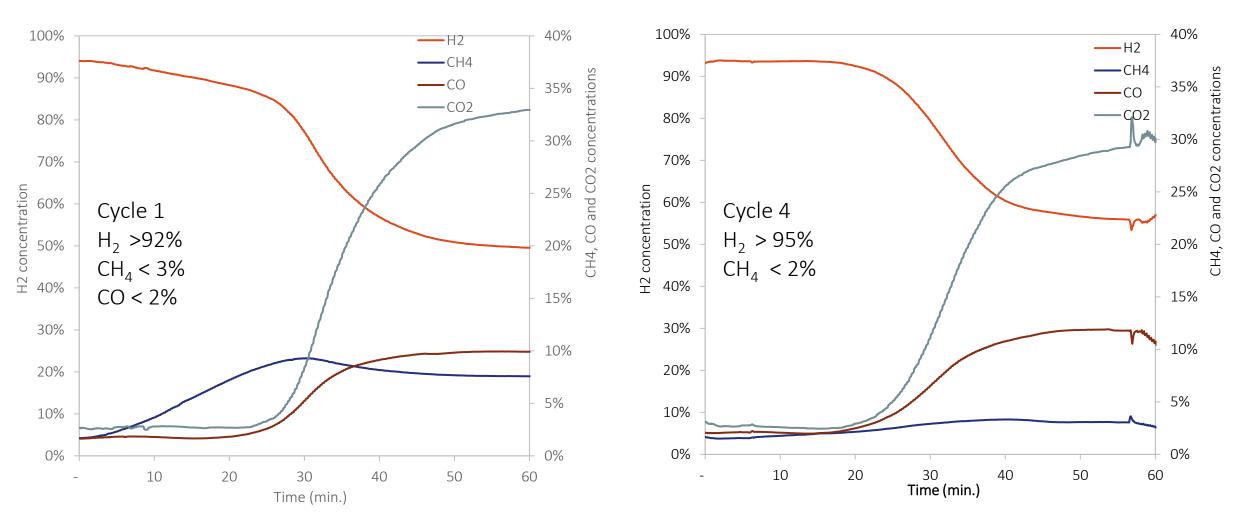
Steam R value: 2.0

SER/SEWGS – With syngas - Converge Cat

IFE

Process Parameters

<u>Temperature:</u> 650°C <u>Pressure:</u> 0.36 barg


Fluidization velocity: 0.05 m/s

Feedstock and Materials

Gas Feed: (mol%): 41.9% H2, 10.0% CO, 32.4% CO2, 10.5% CH4, 4.4% C2H4, 0.9% N2

Steam R value: 2.0

Materials: 120.7 g CaO sorbent + 12.5 g Converge Cat

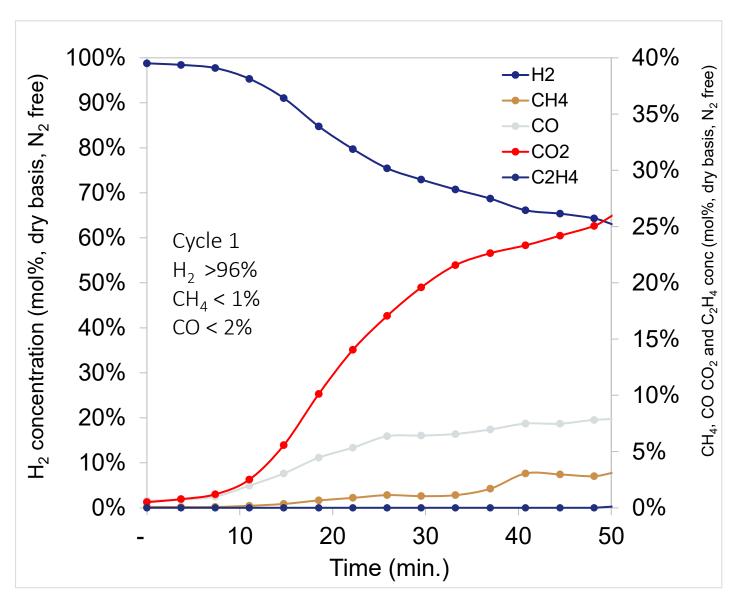
SER/SEWGS – With syngas and glycerol - Commercial Catalyst

Process Parameters

Temperature: 600°C Pressure: 0.23 barg

Fluidization velocity: 0.053 m/s

Feedstock and Materials


Gas Feed: (mol%): 41.9% H2, 10.0% CO, 32.4% CO2, 10.5%

CH4, 4.4% C2H4, 0.9% N2

<u>Liquid Feed</u>: glycerol 5% of gas feed

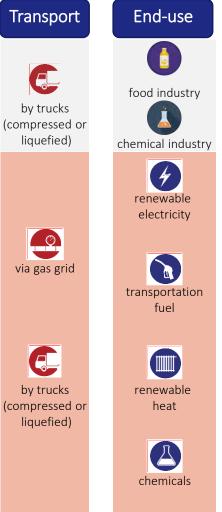
Steam R value: 2.0

Materials: 102 g CaO sorbent + 15.4 g Commercial Catalyst

Next Steps

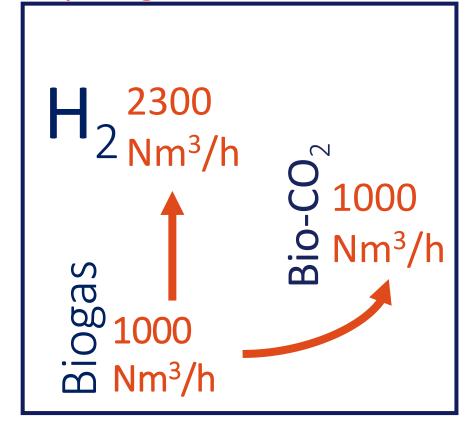
IFE

SER – EHC 500h demonstration at the IFE-HyNor Hydrogen Technology Center, Norway

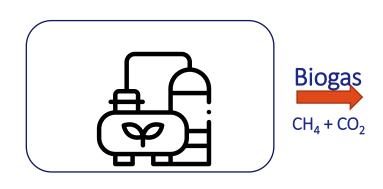


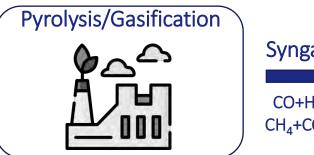
<u>Bio4Fuels - Green Hydrogen from Biogas</u> Sorption Enhanced Reforming - SER

 CO_2

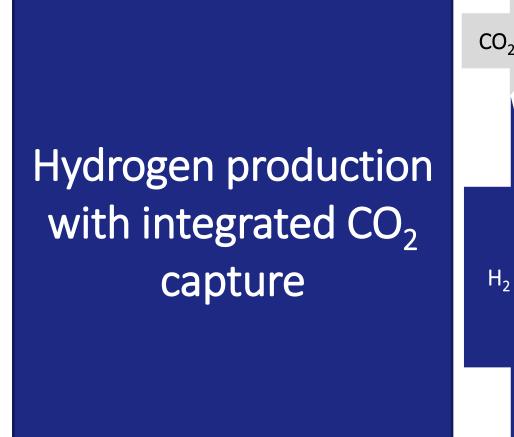

Biogas Upgrading - SER in Numbers

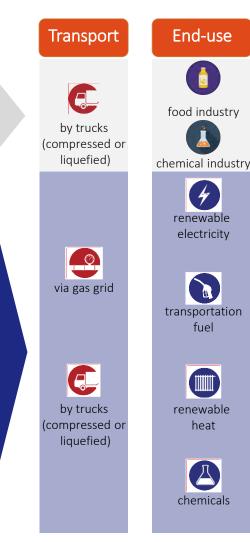
Conversion Efficiency


- H_2 yields (>98%) for CH_4/CO_2 ratios varying between 1 and 2.33.
- CO₂ is over 98% pure.


Hydrogen Production







 H_2

Concluding Remarks

The Sorption-Enhanced Reforming/Shift technology (SER/SEWGS) allows to combine the reforming, shift and CO₂ separation in two reactor vessels only providing the following advantages:

- A simpler and intensified process with fewer reactors, leading to a potentially more compact system
- Fewer costly consumables (no shift catalysts, no CO₂ solvent + additives)
- Improved heat integration possibilities due to CO₂ removal at high temperature
- Separated H_2 (>95 vol%) and CO_2 (> 95 vol%) streams that can be recombined for different fuel/chemical synthesis (methanol, DME) or valorised separately for other markets.
- The excess CO₂ can be sequestrated (BECCS), used to substitute fossil CO₂ in industrial applications or as chemical, or combined with renewable H₂ to produce electro-fuels in power-to-X concepts for energy storage.
- The produced H₂ can also be used alone, as chemical or as fuel.
- Can reform liquid such as glycerol
- These advantages result in CAPEX reduction of about 20-30% compared to conventional commercially available technologies.

The CONVERGE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 818135

Website: www.converge-h2020.eu

Researchgate: CONVERGE: CarbON Valorisation in Energy-efficient Green fuels

Linkedin: showcase/converge-horizon2020

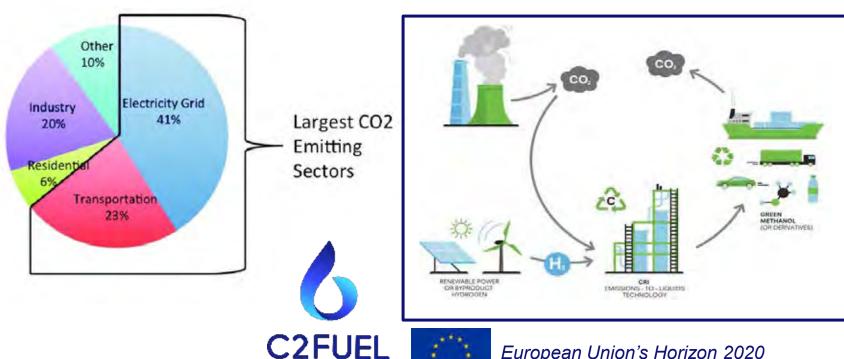
Antonio Oliveira Researcher antonio.oliveira@ife.no

CO₂ direct hydrogenation to DME via membrane reactor

S. Poto¹, M. A. Llosa Tanco², D.A. Pacheco Tanaka², F. Gallucci¹, M. F. Neira d'Angelo¹

¹Inorganic membranes and membrane reactors, Eindhoven **University of Technology.** ²TECNALIA, Basque Research and Technology Alliance (BRTA)

International workshop on CO2 capture and utilization 16th and 17th February 2021

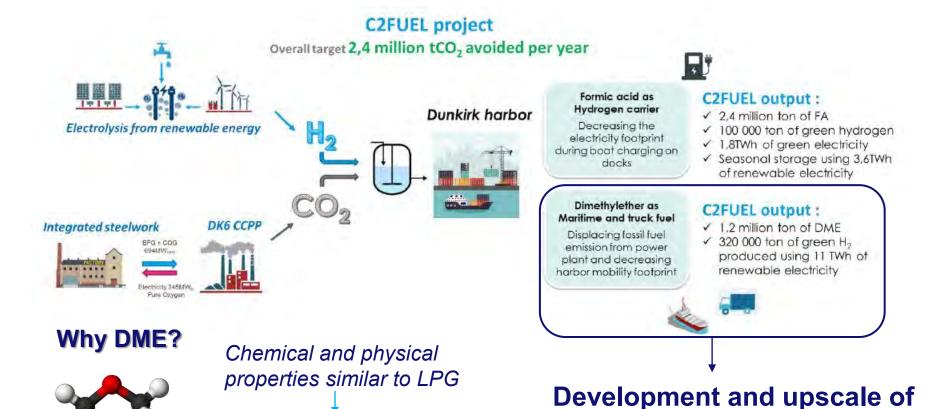


CO₂ emissions and possible solution

CO₂ emission per sector

Source: IEA (2017)

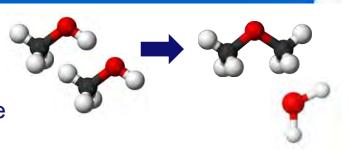
How to reduce emissions? **CO₂ capture and reconversion**



CO₂ emissions and possible solution

Good candidate as

transportation fuel



DME production from CO₂

DME production

Direct route

Methanol synthesis over a Cu-ZnO-Al₂O₃ catalyst

Indirect route

Methanol dehydration to DME over an acid catalyst (HZSM-5)

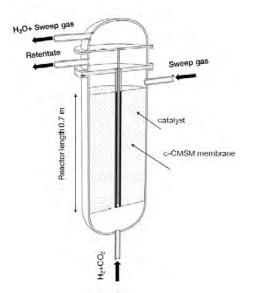
DME synthesis over a Cu-ZnO-Al₂O₃/HZSM-5 bifunctional catalyst

- One reactor
- Less limited by thermodynamics
- More difficult separation

Nowadays the main source is syngas

- Syngas production causes CO₂ emissions
- Depending on syngas composition, CO₂ can be produced

Direct DME synthesis from CO₂


1. CO_2 hydrogenation: $CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O \qquad \Delta H_0 = -49.5 \text{ kJ/mol}$

2. Reverse WGS: $CO_2 + H_2 \rightleftharpoons CO + H_2O$ $\Delta H_0 = 41.2 \text{ kJ/mol}$

3. Methanol dehydration: $2CH_3OH \rightleftharpoons CH_3OCH_3 + H_2O$ $\Delta H_0 = -23.4 \text{ kJ/mol}$

Process conditions

200-250 °C - 20-50 bar

Membrane reactor

Membrane for selective water removal

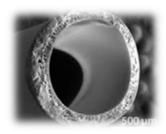
Reaction and separation in the same unit

Overcome thermodynamic limitations

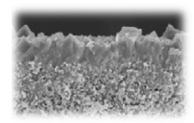
Avoid catalyst deactivation due to water adsorption

Membrane requirements:

Hydrophilicity



Stability (thermal, mechanical, chemical)


High vapor/gas selectivity

Polymeric membranes

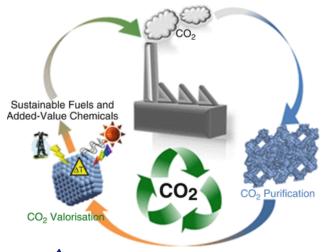
- High permeability
- Low stability (thermal-mechanical)

Ceramic membranes (zeolite, alumina, etc.)

- High permeability/selectivity
- Low stability (hot humid environment)

Carbon membranes

- Possible hydrophilicity
- Stability
- Possibility to tune properties



Project goals:

- 1. Development of carbon membranes (TECNALIA & TU/e)
 - Synthesis of Al-CMSM with improved hydrophilicity
 - Characterization of Al-CMSM
- 2. Development of a 1D-phenomenological membrane reactor model (TU/e)
 - o Effect of membrane properties on reactor performance
 - Optimize the operating conditions
 - Propose a cooling strategy

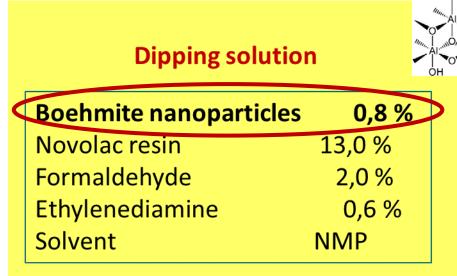
Main objective:

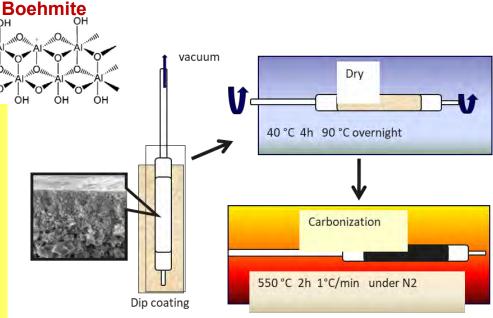
Promote a valid alternative for CO₂ valorization

Development of Al-supported Carbon Molecular Sieve Membranes

Carbon molecular sieve membranes

Development and manufacturing AI-CMSM

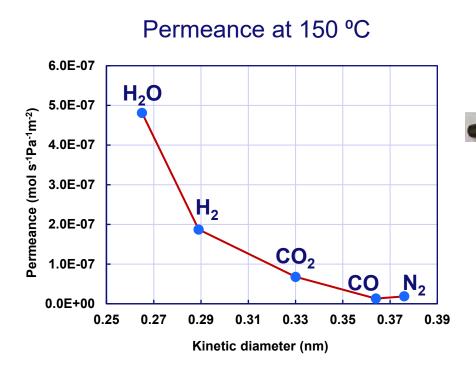

+

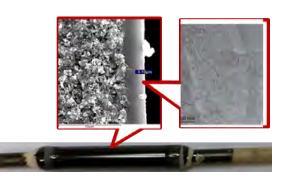

CH₂=O

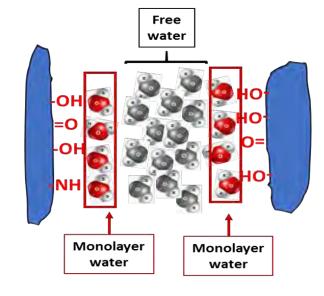
Formaldehyde

Phenolic resins

Novolac: acidic media and Formaldehyde /Phenol ≈ 0.75-0.85

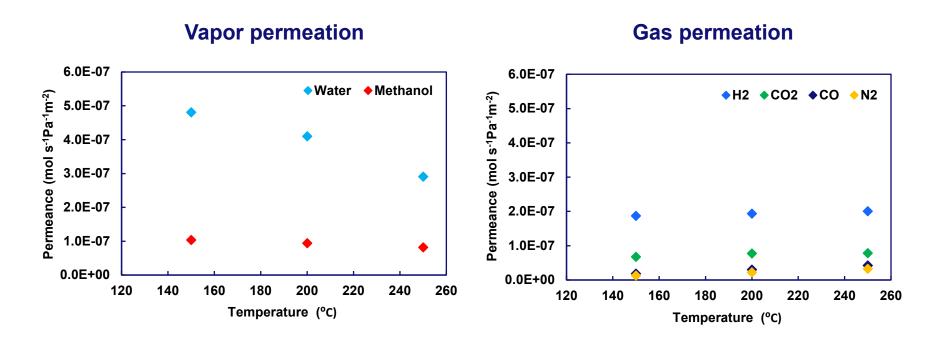






Carbon molecular sieve membranes

Development and manufacturing AI-CMSM

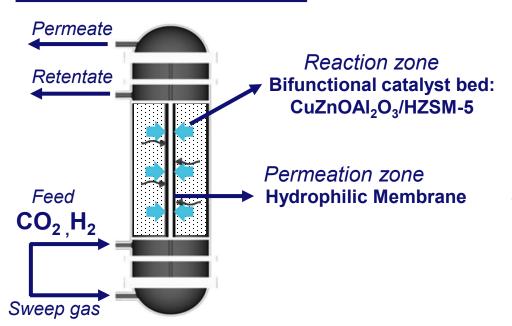


Carbon molecular sieve membranes

Development and manufacturing AI-CMSM

Single gas-vapor permeation experiment at $\Delta P = 3$ bar

Water has the highest permeance at each condition


Membrane reactor model for the CO₂ hydrogenation to DME

Reactor features and model hypotheses:

Fixed bed membrane reactor

Trans-membrane flux:

$$J_i = \wp_i \cdot \left(P_i^R - P_i^P \right)$$

Sweep gas (CO_2+H_2)

Water removal Heat removal

Co-current configuration

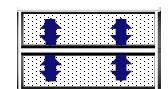
Mass balances

Energy balances

Momentum balance

- Reaction
- Permeation

- Reaction (Ergun)
- Permeation (No P drops)



Model equations and approach:

Reactor performances

$$X_{CO_2} = \frac{F_{CO_2,0}^R - F_{CO_2}^R + F_{CO_2,tmb}}{F_{CO_2,0}^R + F_{CO_2,tmb}^*} \qquad \frac{CO_2 transmembrane flow}{F_{CO_2,tmb}} = F_{CO_2,0}^P - F_{CO_2}^P$$

$$F_{CO_2,tmb} = F_{CO_2,0}^P - F_{CO_2}^P$$

$$Y_{i} = \frac{N_{c,i}(F_{i}^{R} + F_{i}^{P})}{F_{CO_{2},0}^{R} + F_{CO_{2},tmb}^{*}}$$

$$F_{CO_2,tmb}^* = 0$$

$$F_{CO_2,tmb}^* = 0 \qquad \text{if } F_{CO_2,tmb} \le 0$$

$$F_{CO_2,tmb}^* = F_{CO_2,tmb}$$
 if $F_{CO_2,tmb} > 0$ Reactant cofeeding

if
$$F_{CO_2,tmb} > 0$$

1. Assessment of the membrane optimal properties (permeability and selectivity)

Isothermal conditions

Optimization of the operating conditions

$$T_{in}^R$$
 T_{in}^P $\Delta P = P^R - P^P$ $H_2: CO_2$ $SW = F_{in}^P/F_{in}^R$

Influencing the driving force for permeation

Sweep gas for heat management

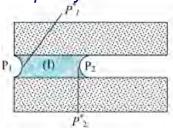
$$P_{in}^R = 40 \ bar$$

 $T_{avg}^R = 200 ^{\circ} \mathrm{C}$

Fixed conditions

Assessment of the membrane optimal properties:

Definitions:


Permeance

 $\mathcal{P}_i \quad [mol/(Pa \cdot m^2 \cdot s)]$

Selectivity $S_{H_2O,i} = \wp_{H_2O}/\wp_i$

Main mechanism of water and methanol permeation:

Capillary condensation

Main mechanism of gases permeation: *Molecular sieving*

Kinetic diameters

 $H_2 < CO_2 \approx CO < DME$

Procedure:

Real membrane

H₂O and H₂ permeating

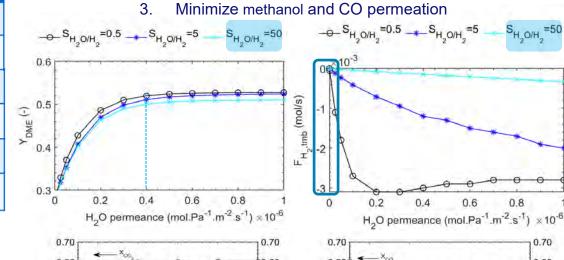
All the species permeating

Hypotheses:

- 1. CO₂ and CO same permeance
- 2. H₂O/ CH₃OH selectivity ≥1 (slightly)
- 3. DME is not permeating (largest size and Tc=128°C)

Operating conditions					
T^R and T^P	200°C	SW	3		
P^R	40 bar	H ₂ :CO ₂	3		
ΔΡ	0 bar	$\Phi^R_{H_2,0}$	$1 Nm^3/h$		

 ∞

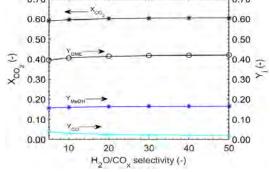

Assessment of the membrane optimal properties:

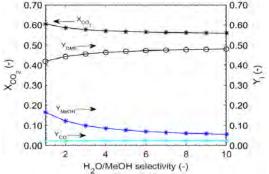
According to the assumption made

Criteria used

Membrane optimal properties			
\mathcal{O}_{H_2O} (mol/(Pa·m²·s))	4·10 ⁻⁷		
S_{H_2O/H_2}	50		
S_{H_2O/CO_2}	30		
$S_{H_2O/CO}$	30		
S_{H_2O/CH_3OH}	10		

- Maximize water permeation flow
- Minimize loss and co-feeding of reactants

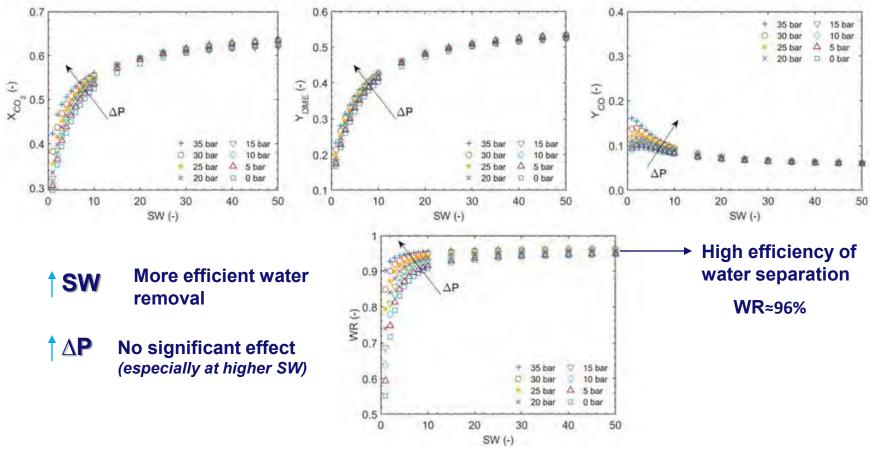

Good agreement with:


ceramic membranes

 $S_{H_2O/DME}$

polymeric membranes

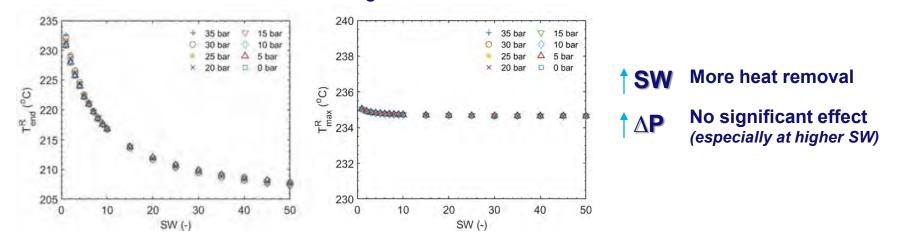
Not enough data available for carbon membranes



SH_O/H_=50

Optimization of the operating conditions:

Effect of SW and ΔP on reaction performance



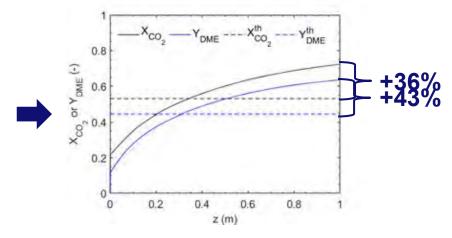
Optimization of the operating conditions:

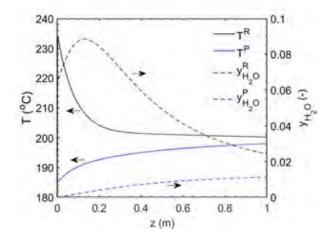
Effect of SW and ΔP on heat management

T-profile optimization criteria:

- T lower than 270-300°C (catalyst deactivation due to sintering)
- As low as possible (desired reactions: exothermic, undesired reactions: endothermic)
- Lower T guarantees higher water permeation and lower gas permeation
- Higher than 190-200 °C (catalyst activation temperature)

$$T_{in}^{P} = 185 \, {}^{0}C$$
 $T_{in}^{R} = 200 \, {}^{0}C$ $SW = 20$ $\Delta P = 5$ bar


Optimize heat & water removal



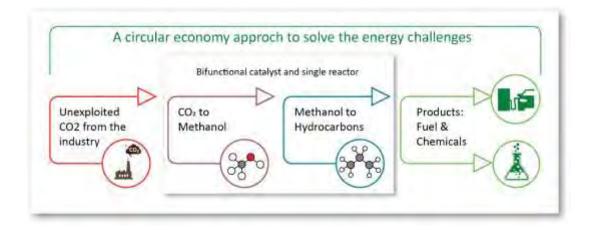
Membrane reactor optimal performance:

Optimal conditions		Fixed conditions	
SW	20	$\Phi^R_{H_2,0}$	$1 Nm^3/h$
ΔΡ	5 bar	P_{in}^R	40 bar
H ₂ :CO ₂	3.5	T_{in}^R	200 °C
T_{in}^{P}	185 °C		

- Temperature and water concentration show similar profiles
- The efficiency of water removal is 96%

Conclusions

- 1. The AI-CMSM showed high water permeance and vapor/gas selectivity
- 2. There is no need to have the highest **membrane performance**. An optimum has been found for water permeance and selectivity.
- The sweep gas promotes both heat and water removal.
 The temperature profile can be optimized thanks to the sweep gas inlet temperature
- 4. The **cocurrent configuration** has several positive effects:
 - Highest driving force for heat and water removal is at the entrance
 - Water back permeation is avoided
- 5. The operating conditions have been optimized. Considerations are:
 - There is no need to have a high ΔP
 - A sweep gas is used instead, with a higher flow rate. The sweep gas can be recirculated.
- 6. The **thermodynamic limitations** have been overcome (with a 96% efficiency of water removal)

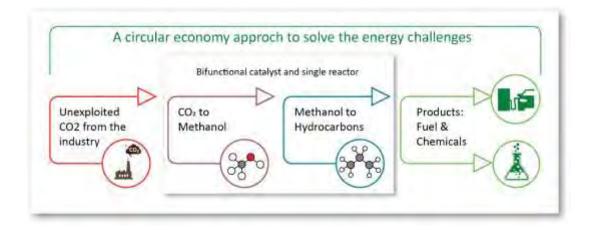


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 838014 (C2Fuel project).

Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS

Catalyst development within the COZMOS project

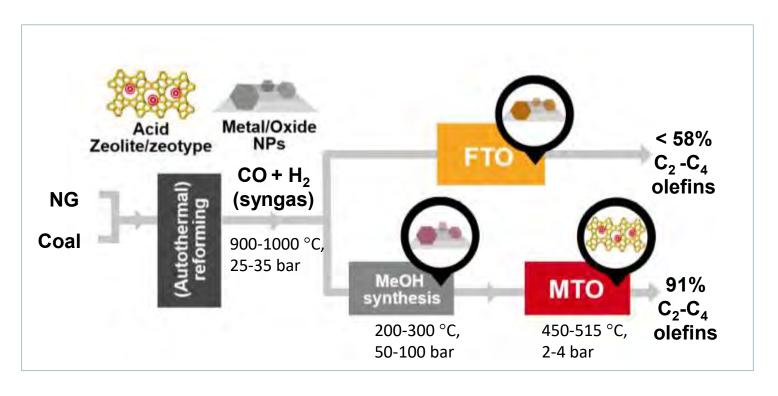
Unni Olsbye, University of Oslo

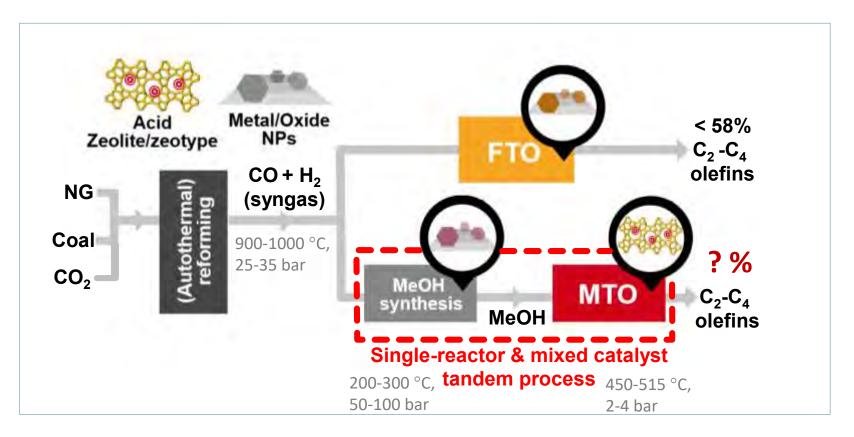


Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS

Catalyst development within the COZMOS project

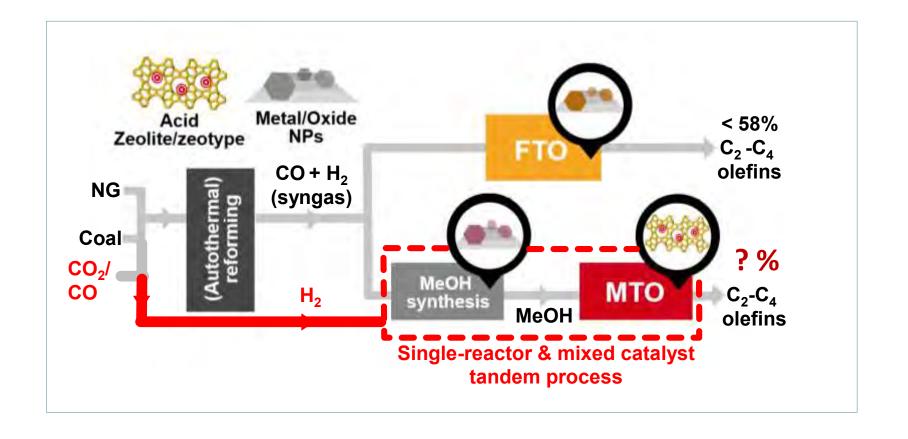
Unni Olsbye, University of Oslo



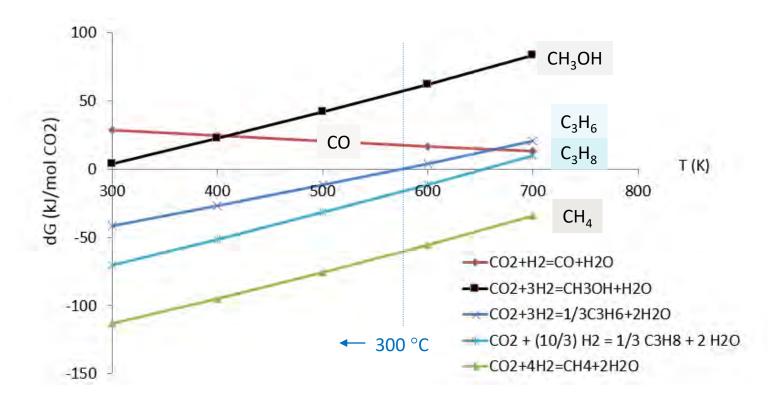


H.M. Torres Galvis, K.P. de Jong ACS Catalysis 2013, 3, 2130-2149.

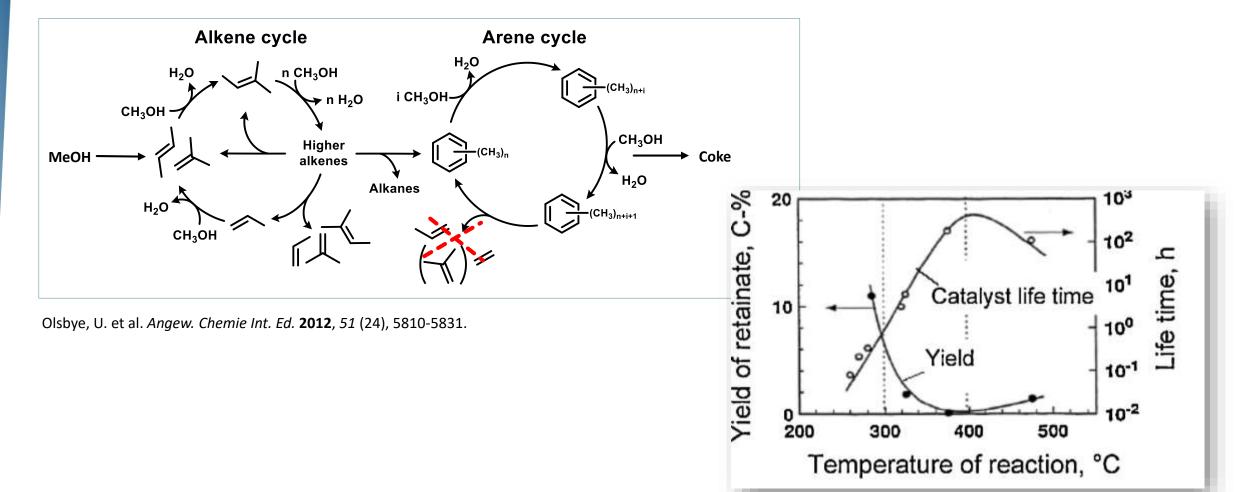
J.Q. Chen, A. Bozzano, B. Glover, T. Fuglerud, S. Kvisle Cat. Today 2005, 106, 103-107.

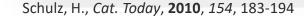


F. Jiao, X. Bao et al. Science 2016, 351, 1065-1068. K. Cheng, Y. Wang et al. Angew. Chemie Int. Ed. 2016, 55, 4725-4728.

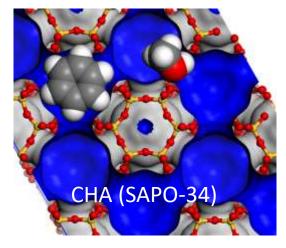


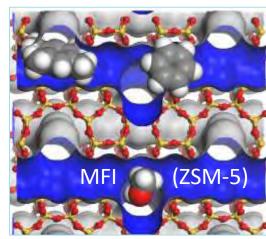
Thermodynamic considerations

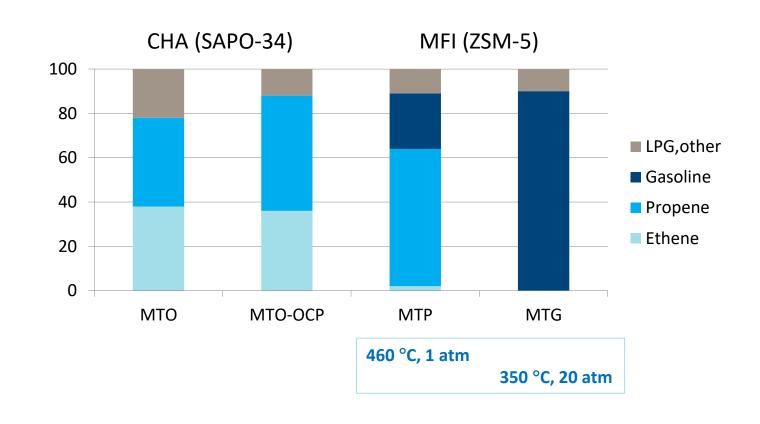



Thermodynamic data from TRC Table

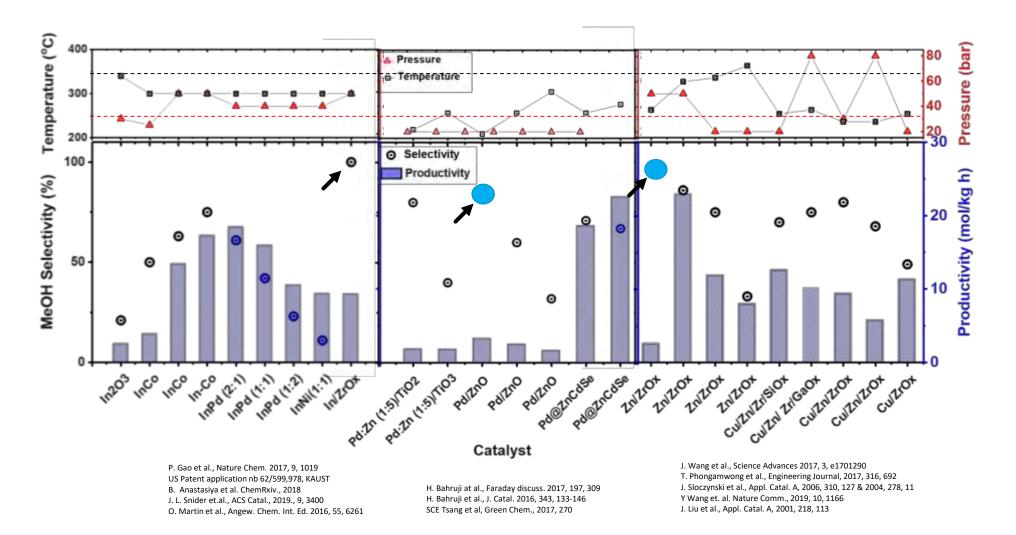
Tandem catalysis challenges - The temperature gap -



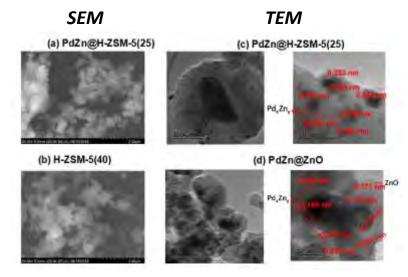




Tandem catalysis: Methanol to propane/propene candidates



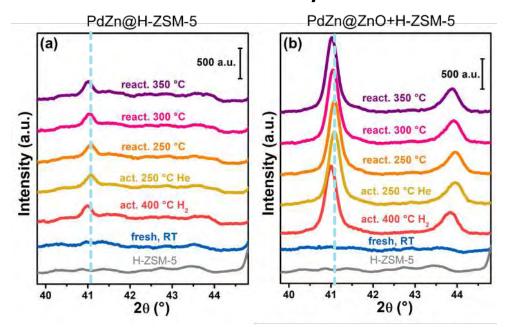
Tandem catalysis: CO₂ hydrogenation candidates

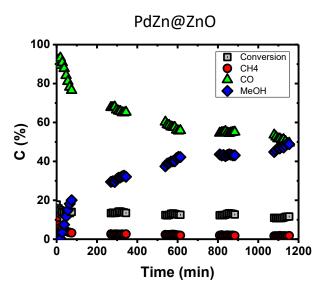

Case 1: PdZn/ZnO + ZSM-5

PdZn@ZnO: Pd salt was impregnated onto ZnO, mixed with H-ZSM-5 and pretreated in H₂ flow at 400 °C for 1 h.

PdZn@H-ZSM-5: Pd complex was grafted onto mesoporous H-ZSM-5, followed by reduction and Zn grafting, and

reduction in H₂ at 500 °C for 4 h.

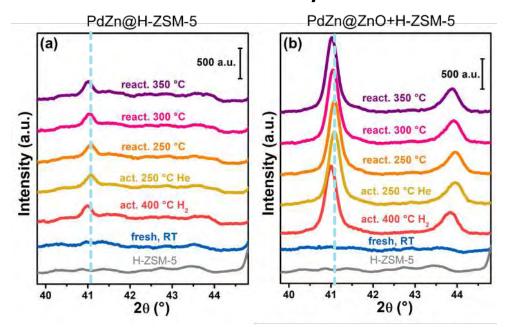

Sample	Elemental composition		Textural properties	
	Si/Al	Zn/Pd	BET area	Micropore
			(m²/g)	volume
				(cm³/g)
H-ZSM-5 (25)	25		420	0.176
PdZn@H-ZSM-5 (25)	25	5	348	0.121
H-ZSM-5 (40)	40		444	0.196
PdZn@ZnO		16		

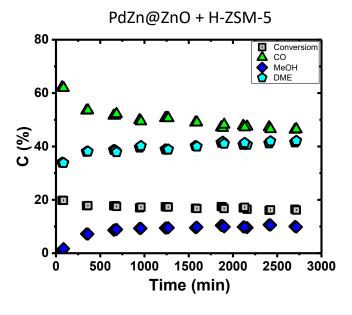

PdZn/ZnO + ZSM5

PXRD – PdZn alloy formation

Catalyst testing

300 °C, 20 bar

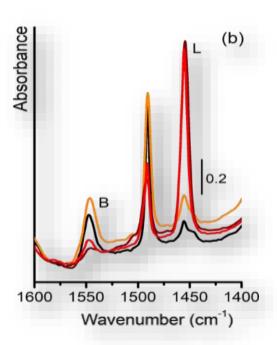



PdZn/ZnO + H-ZSM-5

PXRD – PdZn alloy formation

Catalyst testing

300 °C, 20 bar



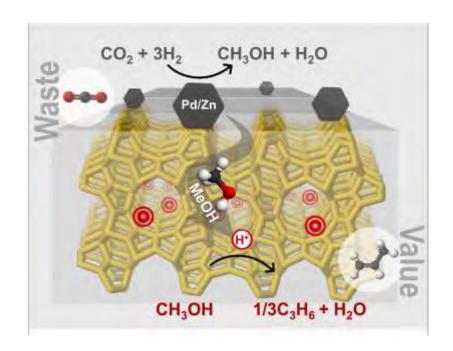
PdZn/ZnO + H-ZSM-5

Acid sites quantification using pyridine FT-IR spectroscopy

Sample	Step	Brønsted sites (mmol/g)	Lewis sites (mmol/g)
Fresh H-ZSM-5	Si/Al = 25	0.21	0.07
	Si/Al = 40	0.15	0.07
PdZn@H-ZSM-5 (25)	As prepared	0.02	0.57
	Tested	0.02	0.46
	As prepared	0.11	0.05
PdZn@ZnO + H-ZSM-5 (40)	Activated	0.04	0.25
	Tested	0.03	0.32

Black curve: Parent H-ZSM-5(40),

Orange curve: PdZn@ZnO+H-ZSM-5(40) as-prepared sample,

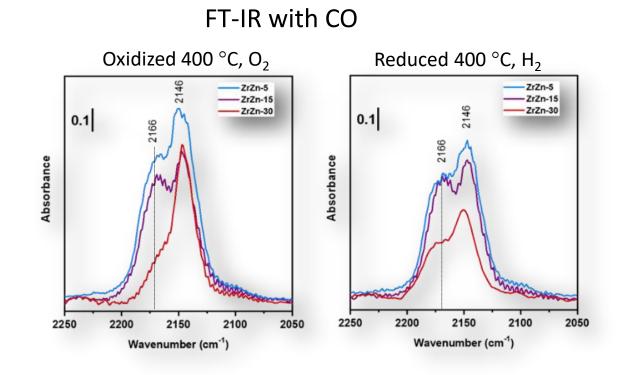

Red curve: PdZn@ZnO+H-ZSM-5(40) sample treated with H₂ at 400 °C for 1 h,

Brown curve: PdZn@ZnO+H-ZSM-5(40) tested sample.

Summary and outlook – Case 1

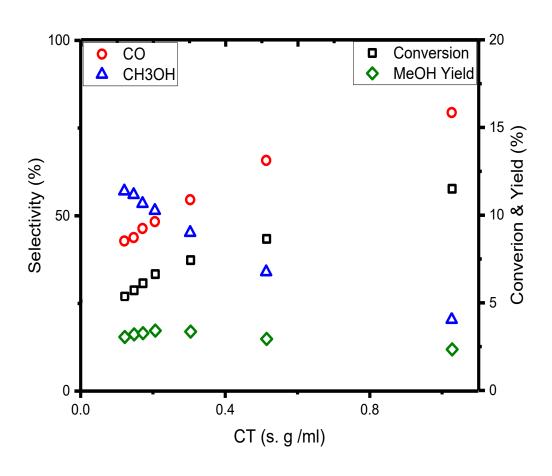
- PdZn alloy maintains high methanol selectivity at 300 °C, and may be suited for the tandem process
- However, excess Zn migrates to the H-ZSM-5 zeolite, where it ion exchanges onto the Brønsted acid sites (confirmed by Zn K edge EXAFS measurements), thereby hindering hydrocarbons formation

Paper 1. Ahoba-Sam, C.; Borfecchia, E.; Lazzarini, A.; Bugaev, A.; Isah, A.A.; Taoufik, M.; Bordiga, S.; Olsbye, U.; On the conversion of CO₂ to value added products over composite PdZn and H-ZSM-5 catalysts: excess Zn over Pd, a compromise or a penalty? Catalysis Science & Technology, 2020, 10, 4373–4385.



Case 2: $Zr_{1-x}Zn_xO_2 + H-ZSM-5$ (or H-SAPO-34)

 $Zr_{1-x}Zn_xO_2$ (X = 0.05, 0.15 or 0.30) was prepared by co-precipitation and eventually mixed with H-ZSM-5 (or SAPO-34) before testing.


ZrZn-30 10³ Intensity (a.u.)

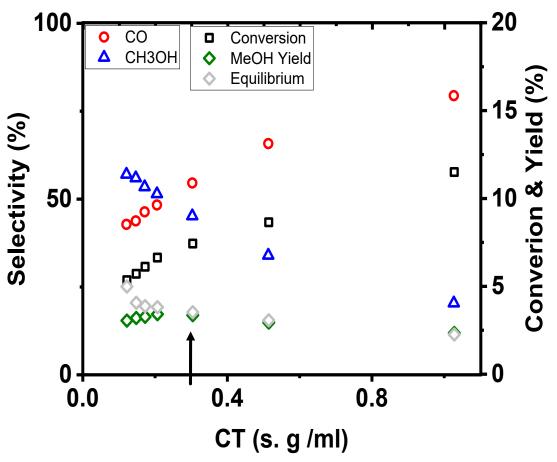
PXRD

Zr_{1-x}Zn_xO₂ alone

(1)
$$CO_2 + H_2 \rightarrow CO + H_2O$$

(2)
$$CO_2 + 3 H_2 \rightarrow CH_3OH + H_2O$$

(-2) $CH_3OH + H_2O \rightarrow CO_2 + 3 H_2$


$$(3)CH_3OH \rightarrow CO + 2 H_2$$

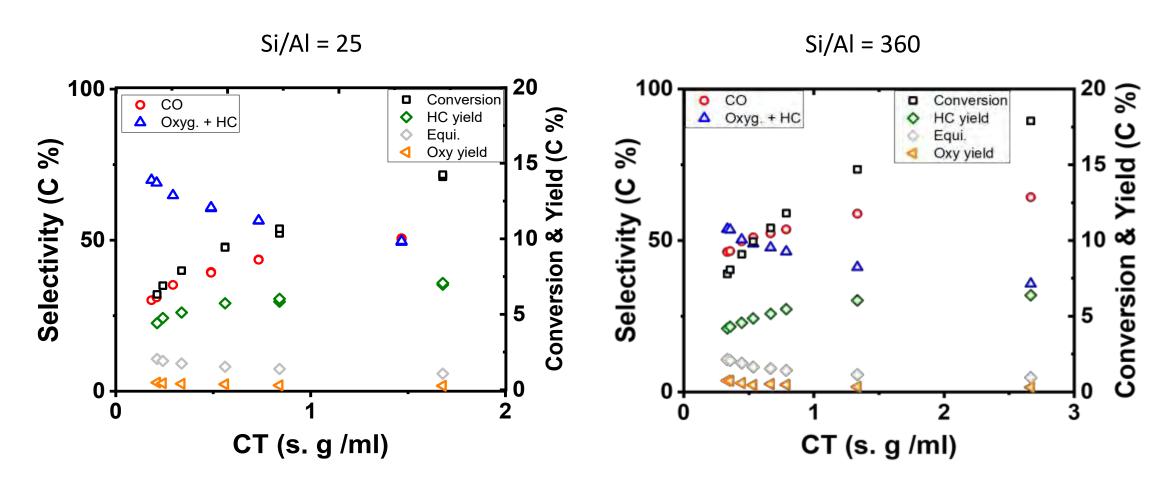
$$K_{eq,2} = \frac{P(CH3OH)*P(H2O)}{P(CO2)*P(H2)^3}$$

Zr_{1-x}Zn_xO₂ alone

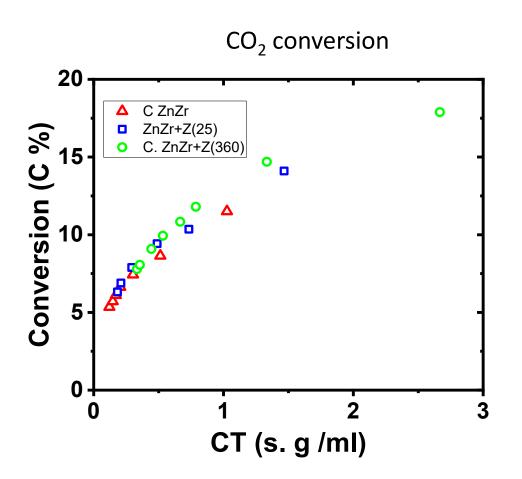
(1)
$$CO_2 + H_2 \rightarrow CO + H_2O$$

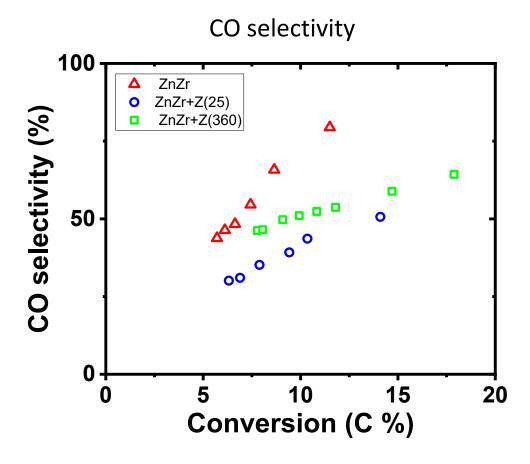
(2)
$$CO_2 + 3 H_2 \rightarrow CH_3OH + H_2O$$

(-2) $CH_3OH + H_2O \rightarrow CO_2 + 3 H_2$

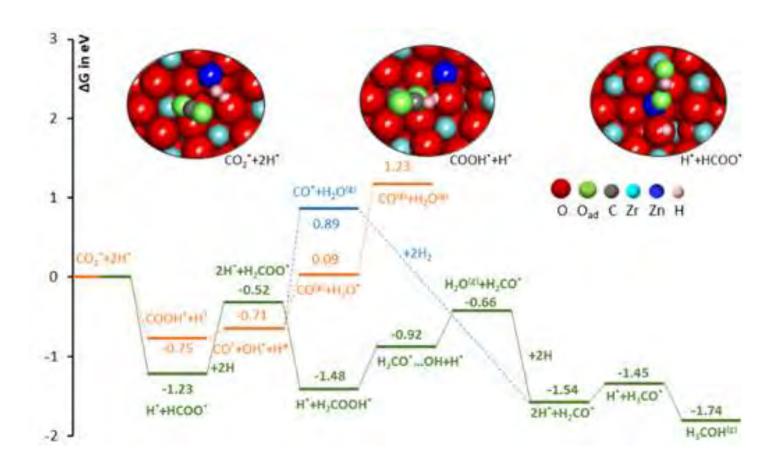

$$(3)CH_3OH \rightarrow CO + 2 H_2$$

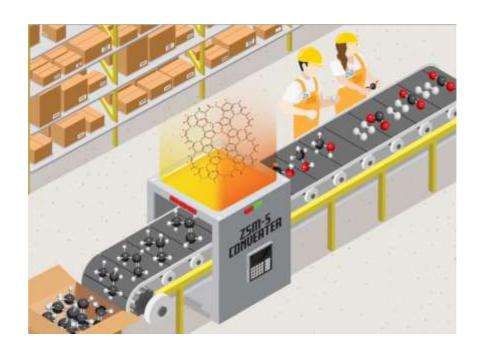
$$K_{eq,2} = \frac{P(CH3OH)*P(H2O)}{P(CO2)*P(H2)^3}$$


$Zr_{1-x}Zn_xO_2 + H-ZSM-5$



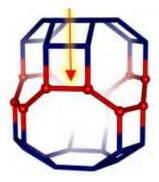
$Zr_{1-x}Zn_xO_2 + H-ZSM-5$




ZnZrO – computational studies

Summary and outlook – Case 2

- Studies of the **ZnZrO+H-ZSM-5** system shows that methanol is a primary product from CO₂, and both CO and hydrocarbons are formed from methanol, over the tandem catalyst
- Methanol is formed via the formate route over ZnZrO
- CO₂ hydrogenation is the rate-limiting step of the tandem reaction


Paper 2. Ticali, P.; Salusso, D.; Ahmad, R.; Ahoba-Sam, C.; Ramirez, A.; Shterk, G.; Lomachenko, K.A.; Borfecchia, E.; Morandi, S.; Cavallo, L.; Gascon, J.; Bordiga, S.; Olsbye, U. CO₂ hydrogenation to methanol and hydrocarbons over bifunctional Zn-doped Science & Technology, ZrO₂/Zeolite catalysts. Catalysis 2020. https://doi.org/10.1039/D0CY01550D.

Case 3: ZnCeZrO + H-RUB-13

SAPO-34

RUB-13

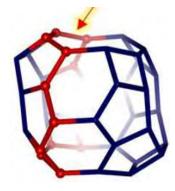
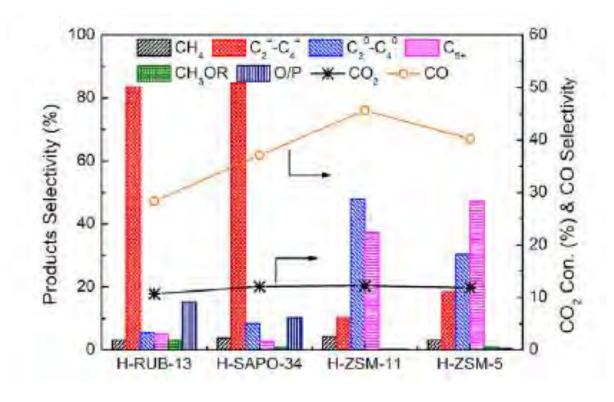
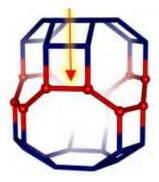



Illustration from: J. H. Kang, J.H et al., ACS Catal. **2019**, 9, 6012.



 $Zn_{0.5}Ce_{0.2}Zr_{1.8}O_4$ + zeolite, 350 °C, 10 bar, H_2/CO_2 = 3:1, GHSV = 4,800 mL/gh

ZnCeZrO + H-RUB-13

SAPO-34

RUB-13

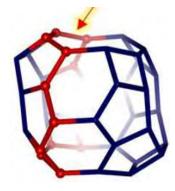
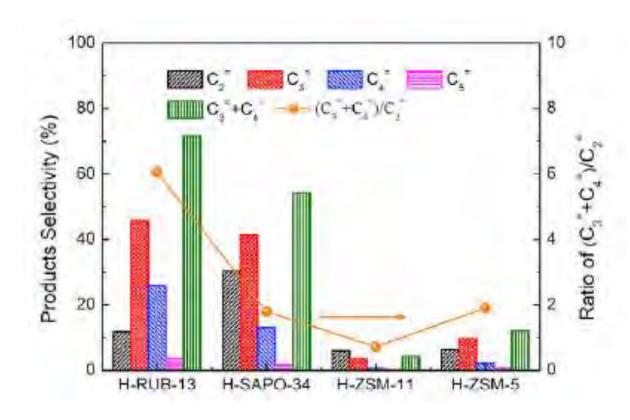
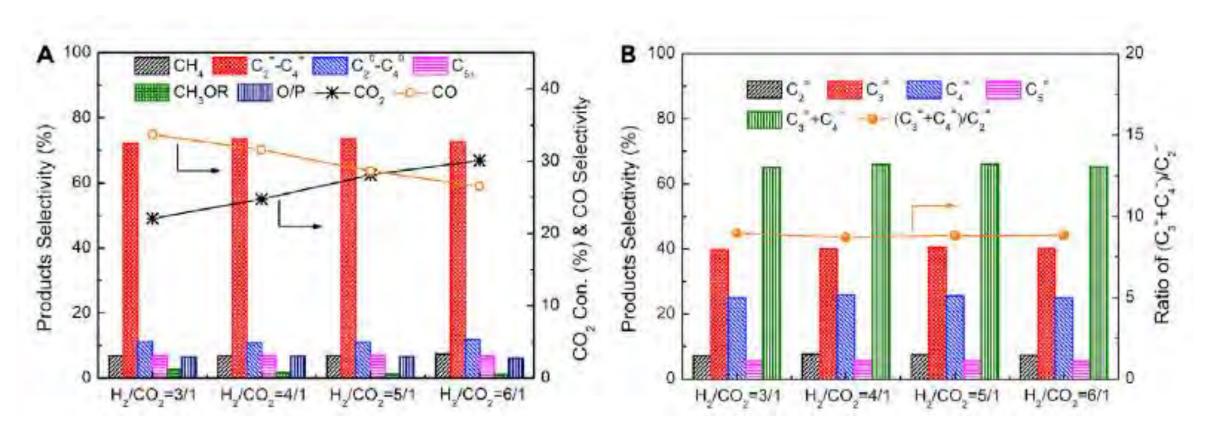



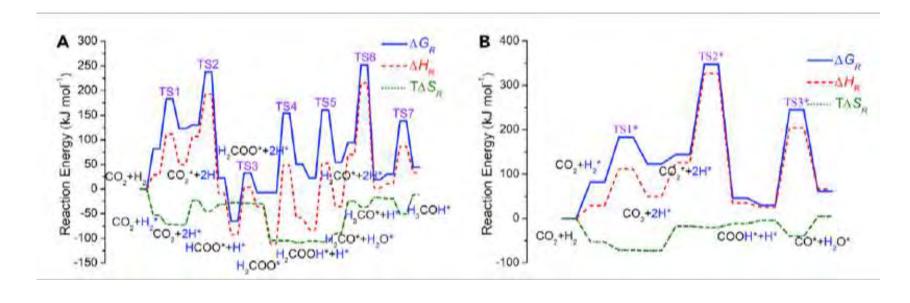
Illustration from: J. H. Kang, J.H et al., ACS Catal. 2019, 9, 6012.

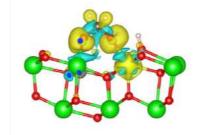


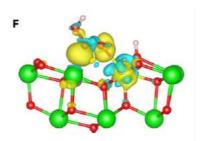
 $Zn_{0.5}Ce_{0.2}Zr_{1.8}O_4$ + zeolite, 350 °C, 10 bar, H_2/CO_2 = 3:1, GHSV = 4,800 mL/gh

ZnCeZrO + H-RUB-13

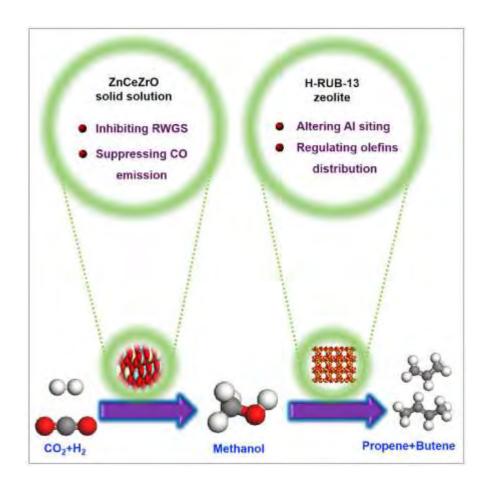
Influence of test conditions




 $Zn_{0.5}Ce_{0.2}Zr_{1.8}O_4$: RUB-13 = 1:2, 350 °C, 35 bar, H_2/CO_2 = 3:1 – 6:1



ZnCeZrO + RUB-13

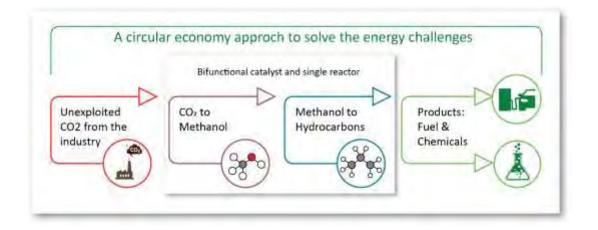


Summary and outlook – Case 3

- Studies of the **ZnCeZrO+H-RUB-13** system shows that small changes in the cavity-window size of the zeotype substantial has impact on hydrocarbon product distribution.
- $C_3^{=}$ and $C_4^{=}$ account for 90% of light olefins due to the promotion of the alkene-based cycle
- CH₃OH is formed on Zn_{0.5}Ce_{0.2}Zr_{1.8}O₄ via the formate - methoxyl intermediates mechanism.

Paper 3. Wang, S.; Zhang, L.; Zhang, W.; Wang, P.; Qin, Z.; Yan, W.; Dong, M.; Li, J.; Wang, J.; Lin He,L.; Olsbye, U.; Fan, W., Selective conversion of CO₂ into Propene and Butene. Chem **2020**, 6, 1-20.

Conclusions and Outlook


- Case 1. Studies of the PdZn+H-ZSM-5 system shows that methanol selectivity of PdZn/ZnO may be maintained under MTO-relevant conditions, but leaching of Zn into the zeolite, thereby poisoning the Brønsted acid sites, is a challenge.
- Case 2. Studies of the ZnZrO+H-ZSM-5 system shows that methanol is a primary product from CO₂, and both CO and hydrocarbons are formed from methanol, over the tandem catalyst. CO₂ hydrogenation is the rate-limiting step of the tandem reaction.
- Case 3. Studies of the ZnCeZrO+H-RUB-13 system shows that small changes in the cavity-window size of the zeotype has substantial impact on hydrocarbon product distribution. CH₃OH is formed selectively on Zn_{0.5}Ce_{0.2}Zr_{1.8}O₄ via the formate - methoxyl intermediates mechanism

Overall, the three case studies yield important insight in function – performance correlations for the methanol-mediated conversion of CO₂ and H₂ to propane and propene

CO2MOS

Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS

Thanks to all COZMOS WP1 partners for their contributions, and

Thank you for your attention!

INTERNATIONAL WORKSHOP ON CO2 CAPTURE AND UTILIZATION TU/E - EINDHOVEN - 16-17 FEBRUARY 2021

CO₂ Capture Using 3D Printed PEI Adsorbents Supported By Carbon Nanostructures

Shreenath Krishnamurthy¹, Richard Blom¹, Carlos Adolfo Grande¹, Kari Anne Andreassen¹, Vesna Middelkoop², Marleen Rombouts² and Adolfo Bendito Borras³

1. SINTEF Industry, Oslo, Norway 2. VITO, Mol, Belgium 3. AIMPLAS, Valencia, Spain

Shreenath.Krishnamurthy@sintef.no

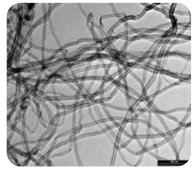
Introduction

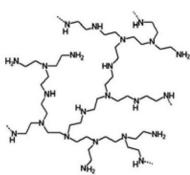
Low pressure drop and better mass transfer

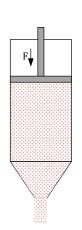
- CO₂ capture from power plants is associated with large capture footprint
- Fast cycling and higher flowrates can lower footprint
- Structured sorbents are advantageous over pellets for lowering the footprint
- 3D printing offers good control over shape of the sorbent and channel geometry
- Aim of this work: Evaluate a 3D printed monolith for post-combustion carbon capture:
 From equilibrium data to process simulations

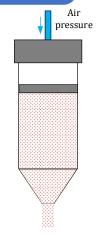
3D printing by Micro-Extrusion / Robocasting

PEI-CNT-water based viscous paste

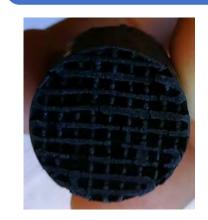

Extrusion through nozzle at room temperature



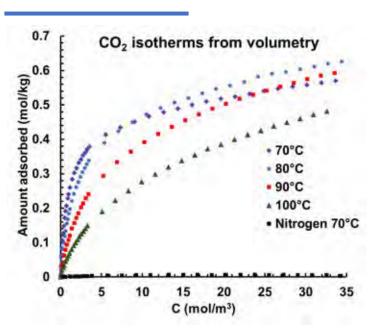

Computer controlled deposition of fibres

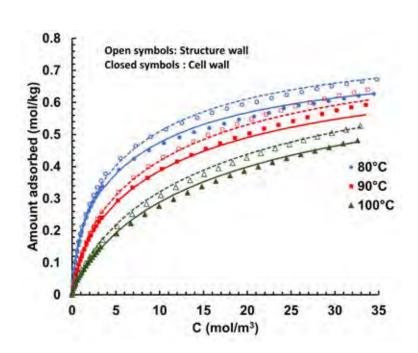


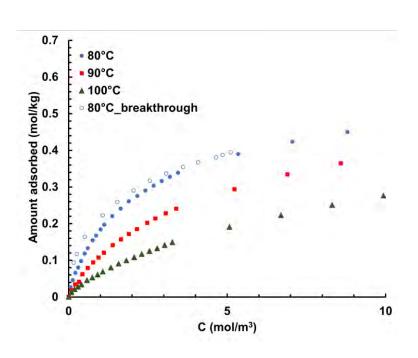
Drying



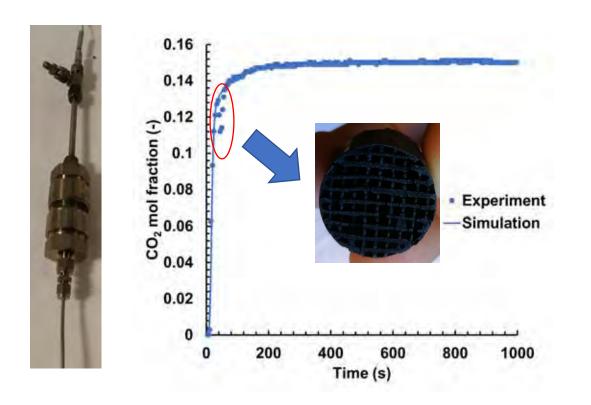
Piston-based and pneumatic dispensing

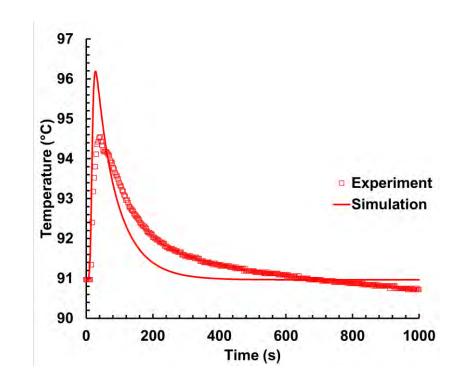



Furnace drying at 40°C
Channel diameter 1.4 mm
Wall thickness 0.6 mm

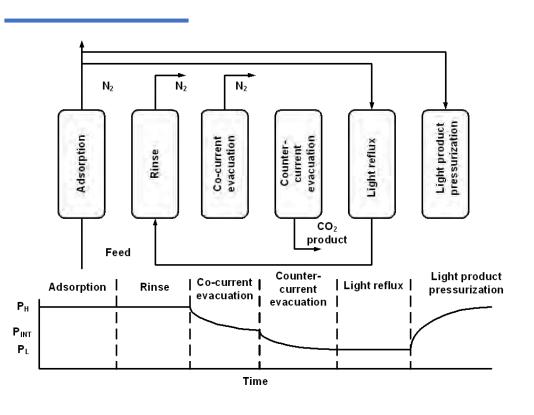


CO₂ adsorption equilibrium




- > Volumetric experiments to measure adsorption isotherms
- > One structure was crushed and isotherms on cell wall material and monolith wall material measured for different temperatures
- ➤ Breakthrough experiments carried out with 15% CO₂ in N₂ feed, desorption with pure N₂
- \rightarrow Heat of adsorption for CO₂ = -100 kJ/mol, CO₂ adsorption capacity at 0.15 bar and 90°C = 0.3 mol/kg
- ➤ Minor variations observed in CO₂ adsorption capacity within the 3D printed adsorbent

CO₂ adsorption kinetics



- > Dynamic column breakthrough experiments (2 structures stacked one on top of the other, 15% CO₂, 85% N₂)
- > Adsorption part of the breaktrhough experiments analysed with a 1D process model
- > Fitting the LDF and heat transfer co-efficient values for 3 temperatures.

Process simulation and optimization

The system : $15\%~{\rm CO_2}$, $85\%~{\rm N_2}$, $90^{\circ}{\rm C}$ Length of column 1 m : diameter 0.29 m Isotherms and LDF coefficient values obtained from volumetry and breakthrough 1D non-isothermal, non-isobaric model

Pressure drop¹

$$\frac{-dP}{dZ} = \frac{28.4u\mu}{d_{ch}^2}$$

Axial dispersion²

$$D_L = D_m + \frac{(2ud_{ch})^2}{192D_m}$$

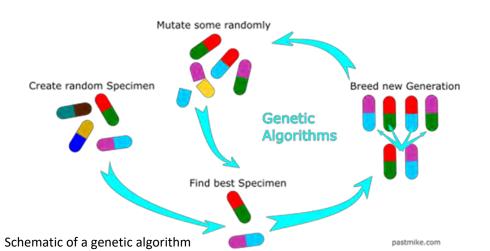
$$CO_2$$
 purity = $\frac{\text{mass } CO2 \text{ in evac}}{\text{total mass evac}}$

$$Productivity = \frac{\text{mass CO}_2 \text{ in } evacuation}{\text{volume of adsorbent X cycle time}}$$

$$CO_2$$
 recovery = $\frac{\text{mass CO2 in evac}}{\text{mass CO2 in feed}}$

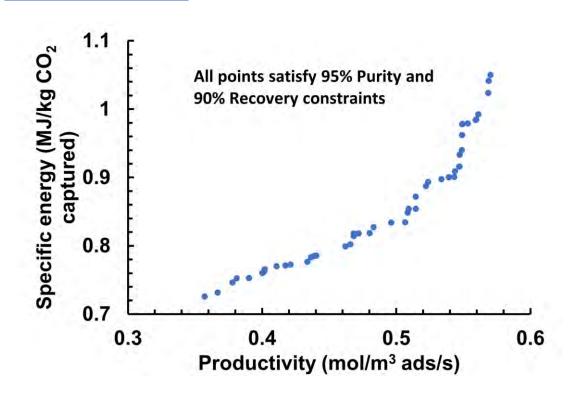
6-step VSA cycle³

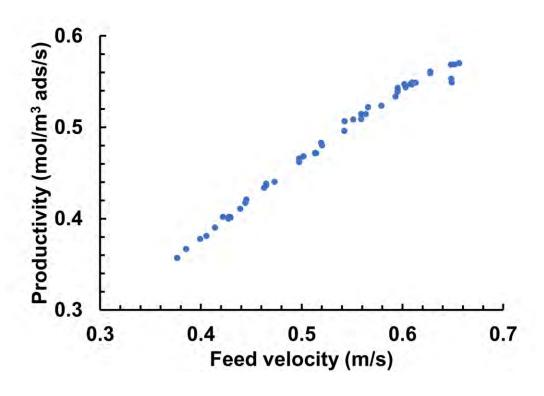
- 1. Patton et al., 2004, Chem Eng Res Des, 82, 199-209
- 2. Rezaei and Webley 2009, Chem Eng Sci, 64,5182-5191
- 3. Khurana and Farooq, 2016, Chem Eng Sci, 152, 507-515


Aim of process study

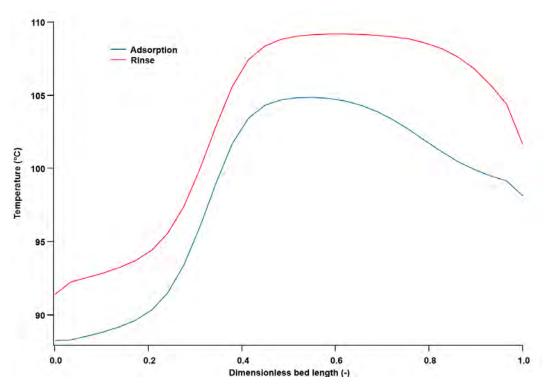
- Identify minimum specific energy and maximum productivity
- Target CO₂ purity ≥ 95%, Target recovery ≥90%

Genetic algorithm




- Multiple variables affect the performance of the adsorption process
- A parametric study may not present the optimum of a process
- ➤ Nature inspired algorithms such as genetic algorithms can give the true minimum of the process
- Multiple objectives (Min. specific energy and maximum productivity)
- Specify the bounds of variables (decision variables) that affect process performance and number of simulations needed
 - Genetic algorithm based optimization (NSGA-II) in MATLAB
 - 30 generations X 140 populations = 4200 simulations

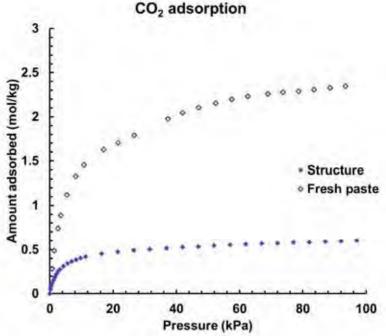
Results from process optimization

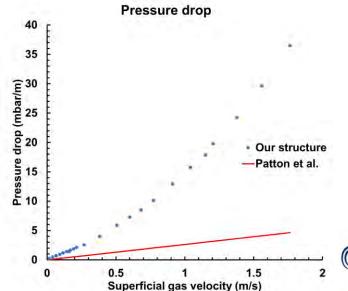

- Minimum specific energy = $0.72 \text{ MJ}_{\text{Electric}}/\text{kg CO}_2$ captured, Maximum productivity 0.57 mol/m^3 ads/s
- Cycle time = 2.5 3 minutes (adsorption step duration =30-40 s)

Conclusions & future work

- > 95-90 purity-recovery targets achieved
- ➤ Minimum specific energy = 0.72 MJ _{Electric}/kg CO₂ captured
- ➤ Maximum productivity= 0.57 mol/m³ ads/s
- Adsorbent to be "married" to its best cycle to understand true potential: Need for alternative cycle configuration
- ➤ Effect of moisture on CO₂ adsorption to be studied
- > High temperatures in a cyclic process can affect sorbent stability

Temperature profiles in the column


CAR


Challenges with 3D printing

- ➤ Instability in printing due to phase separation necessitated the use of additives
- > Reduction in capacity in comparison with pristine paste
- > High shrinkage due to the presence of water

Challenges in the process

- ➤ High temperature swings and presence of O₂ can reduce stability of sorbent
- ➤ Measured pressure drop higher than predicted pressure drop

Acknowledgement

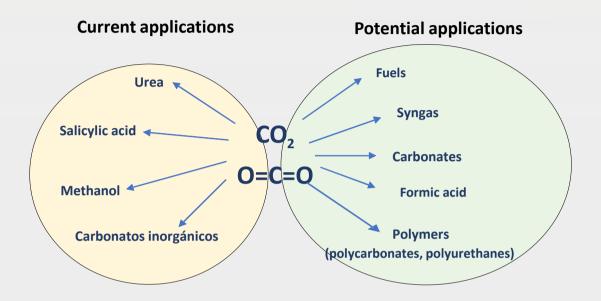
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 760884 (CARMOF).

For more information on this project visit the project web page

https://carmof.eu/

Process intensification in the conversion of CO₂ with a milli-structured reactor

S. Perez, S. Prieto



International Workshop on CO₂ capture and Utilization 16-17 February 2021

Outline

- 1. Process Intensification: microreactors
- 2. Tecnalia's millichannel reactor
- 3. Catalytic tests in Sabatier reaction
- 4. Millichannel reactor scaling-up
- 5. Conclusions

Current processes: Poor energy and mass transfer

Process intensification

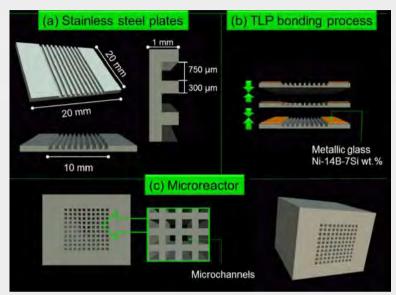
Microstructured reactor

What is a micro or a millireactor?

Denomination according to Kiwi-Minsker & Renken (2005):

- 10 1000 microns of ID: microchannel reactors
- 1 10 millimeters of ID: millichannel reactors

It's a system to obtain processes:


- more efficient,
- with lower operation costs,
- that generates low amount of waste,
- safer,
- smaller
- and with higher productivity.

In chemical synthesis, the use of millireactors improves the mass and energy transfer between the products and the catalyst.

Conventional fixed bed reactor vs 40 times intensified reactor. (Source: Dow Chemical, proceso HOCI)

O.H. Laguna et al. / Chemical Engineering Journal 275 (2015) 45-52

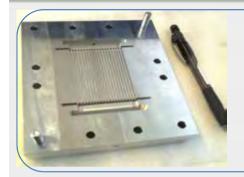
Disadvantages:

- Manufacturing method with several phases
- Catalyst deposition
- Scale-up

Micromining

Stacking

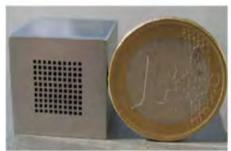
Welding



Peripherals

Stages needed for the manufacture of microreactors.

Adapted from S. Cruz et al. (2011). Chemical Engineering Journal 167. 634-642



Methanol reforming to H2

http://dx.doi.org/10.1016/j.ijhydene.2015.11.047

PROX reaction

O.H. Laguna et al. 2011 doi:10.1016/j.cej.2010.08.088

Cotalytic microchannels

CO2 hydrogenation to methane

Pacific Northwest National Laboratory USA. K.P. Brooks et al. Chemical Engineering Science 62 (2007) 1161 – 1170

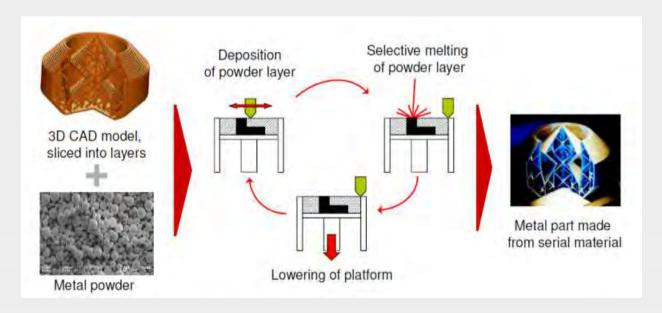
Fischer-Tropsch reaction

Velocys, Inc. 2013

Nitrobencene hydrogenation to aniline

www.hzdr.de/db/Cms?pOid=42528&pNid=3367

Based on new additive technologies, Tecnalia R&I has developed a **microstructured reactor** consisting of several tubes with internal diameter in the range of millimeters (1-4) **enhancing both the mass and energy transfer.**


The reactor can be designed and integrated in a pilot plant for a specific process

Design features of the reactor

- a high length / diameter ratio
- a good heat transmission / evacuation
- a dimensional uniformity of tubes
- a good thermal and mechanical stability
- a simple manufacture method in one piece, "without layers"
- catalyst filling the tubes

Reactor manufacture
Selective
Laser
Melting

Features	Advantages	
Intimate contact between substrates/catalysts	 High mass transfer Decreases the residence time Increases 10-20% performance vs conventional reactors 	
High area/volume ratio	 High heat transfer: stainless steel AISI 316L Minimizes hot spot formation Limits the propagation of an eventual flame 	
Low volume	 Savings in production materials, space and energy Reduced pressure drop 	
Reduced diffusion distances	Minimizes hot spot formationHigh heat transfer	
Scaling-up (not by increasing reactor size)	 Faster implementation of the process on an industrial level Flexibility to be adapted to the production needs 	
Thermic fluid introduced through reactor gaps	 Removes heat continuously through the entire reactor Manages heat in an efficient and flexible way 	

The millichannel reactor technology is appropriate for **exothermic reactions** and allows to overcome **mass transference** limitations

Our applications

- Hydrogenation
- Butanediol from acetoin (Patented)
- Fischer-Tropsch synthesis
- CO₂ transformation

$$CO_2 + 4H_2 = CH_4 + 2H_2O$$
 (RENOVAGAS)

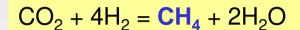
$$CO_2 + 3H_2 = CH_3OH + H_2O (LOWCO2)$$

$$2CO_2 + 6H_2 = DME + 3H_2O (CO2FOKUS)$$

3. Catalytic tests in Sabatier reaction

Comparison traditional fixed-bed vs. millichannel reactor

Fixed-bed:


9 mm inner diameter

Millichannel reactor:

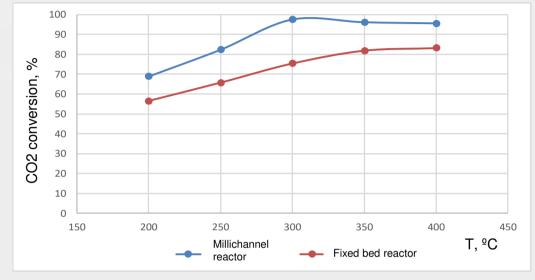
16 channels

1.75 mm inner diameter

85mm	
	35 mm

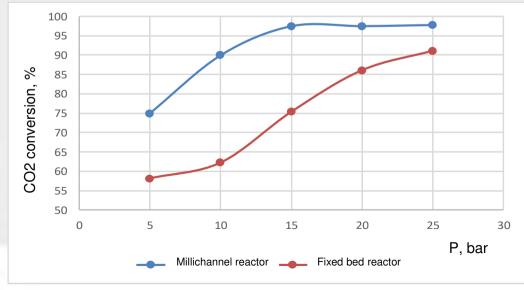
CATALYST Ni/2Al2O3			
Metal content (Ni)	25.2 %		
Particle size	< 220 μm		
Bulk density	0.85 gr/cm ³		

REACTION CONDITIONS		
GHSV	80 NL. g _{cat} -1.h-1	
H ₂ /CO ₂	4	
Catalyst mass	2.56 g.	



3. Catalytic tests in Sabatier reaction

Comparison traditional fixed-bed vs. millichannel reactor

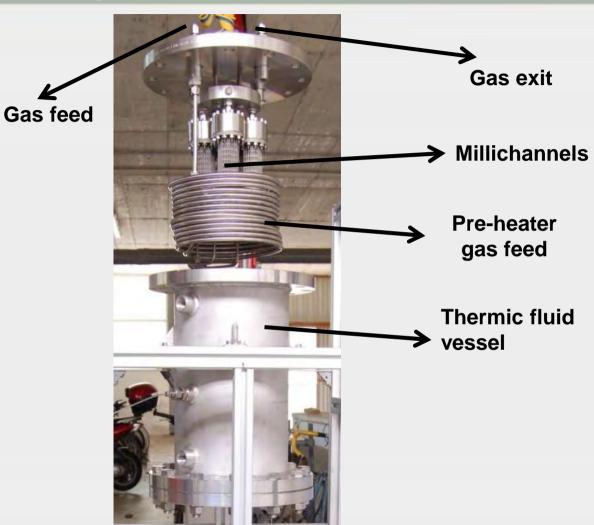

Temperature effect

At 15 bar

Pressure effect

At 300^oC

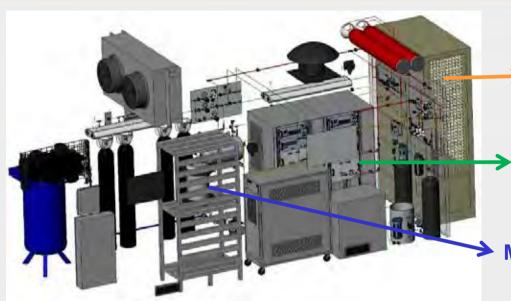
4. Millichannel reactor scaling-up


15kW pilot plant CO₂ methanation

Feeding: cleaned biogas

TRL 5

Number of channels: 388


 ICP-CSIC catalyst (Ru/CeO₂)

Input		Output			
H ₂ , %Vol	CO ₂ , %Vol	CH ₄ , %Vol	H ₂ , %Vol	CO ₂ , %Vol	CH ₄ , %Vol
53,5	13,4	33,1	2,7	1,7	95,6

RENOVAGAS project, funded by the **Spanish Ministry of Economy and Competitiveness** (MINECO) within the call Retos-Colaboración 2014 (RTC-2014-2975-3).

4. Millichannel reactor scaling-up

Distribution panel

► Electrolyser/H₂ supplier

Millichannels (388) reactor

5. Conclusions

- Tecnalia has develop a millichannel reactor for exothermic reactions.
- The reactor:
 - allows a good mass and energy transfer
 - is easy to scale-up by adding channels
 - has a flexible design
 - has a huge number of potential applications
 - has been validated for Sabatier reaction: better results than fixed-bed reactor.

www.tecnalia.com

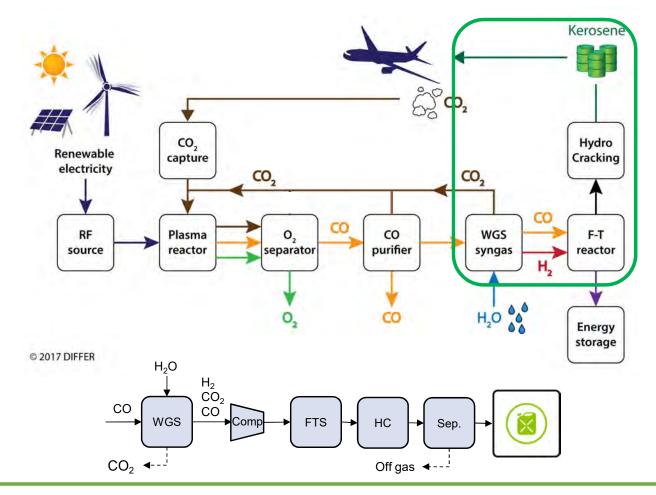
Thank you for your aftention

Production of Sustainable aircraft grade Kerosene from water and air powered by Renewable Electricity, through the splitting of CO₂, syngas formation and Fischer-Tropsch synthesis

The KEROGREEN syngas route to alternative fuels and chemicals

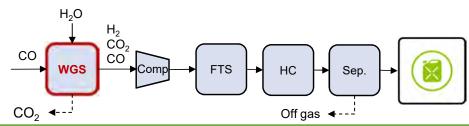
Francisco Vidal Vázquez (Dr. Sc.)

Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT)


International Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop

KEROGREEN: CO route to kerosene

Dr. Francisco Vidal Vázquez – Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop


Syngas Production via Water-Gas Shift (WGS) reaction

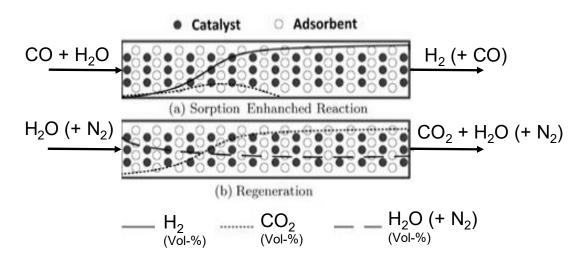
WGS reaction:

$$CO + H_2O \rightleftharpoons CO_2 + H_2$$

$$\Delta H_R^0 = -41.1 \, kJ/mol$$

- Chemical equilibrium:
 - Independent with pressure
 - Favourable at low temperature
- Different catalysts for different temperatures
 - 300 400 °C: Fe/Cr-cat (HT-WGS)
 - 200 300 °C: Cu/Zn-cat (LT-WGS)

Sorption-Enhanced Water-Gas Shift (SE-WGS)

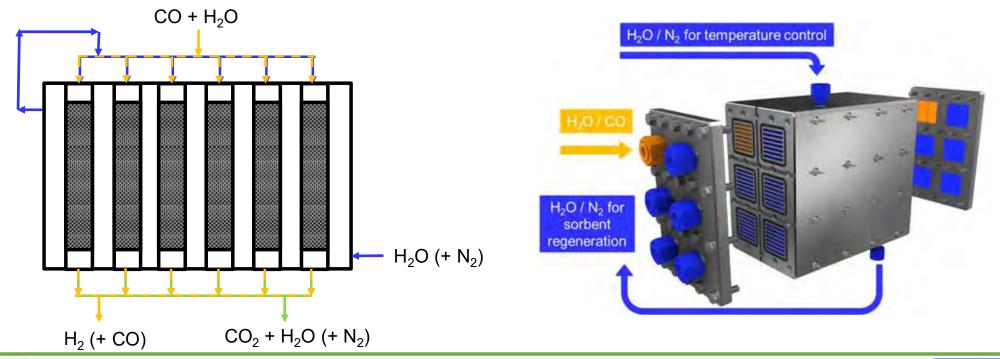


SE-WGS:

$$CO + H_2O \rightleftharpoons CO_2 + H_2$$

Dr. Francisco Vidal Vázquez - Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop

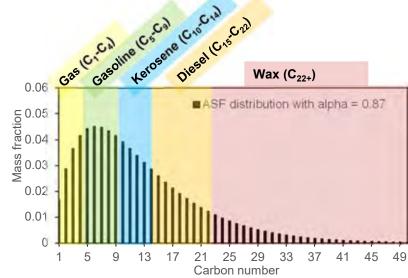
- Solid sorbent is used for *insitu* CO₂ removal
 - Dynamic operation of reactor
- The sorbent is mixed with the catalyst and placed in the reactor
- Other advantages:
 - Higher conversion
 - Reduction of required steam for the WGS
 - Overall-simplification of the process (WGS + CO₂ removal)
 - CO₂ recycle up-stream of the process

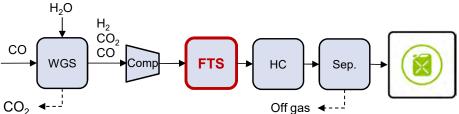

Modified figure from Rodriges et al. 2017

SE-WGS reactor for KEROGREEN

- SE-WGS reactor has 6 different beds which are operated dynamically in order to keep constant outlet flow of syngas
 - Cycle of Reaction/Depressurization/Regeneration/Pressurization

Dr. Francisco Vidal Vázquez – Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop

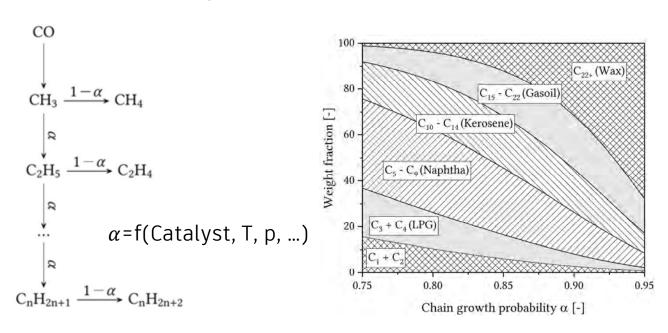

Fischer-Tropsch Synthesis



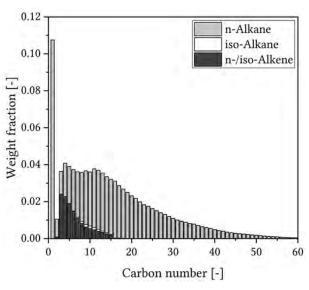
Highly exothermic heterogeneously catalysed polymerization reaction

$$n CO + 2n H_2 \rightarrow (CH_2)_n + n H_2O$$
 $\Delta H_R^0 = -158 \, kJ/mol$

- Chemical equilibrium:
 - Favourable at high pressure and low temperature
- Different catalysts for different application:
 - 300 400 °C: Fe-based cat.
 - Shorter chain hydrocarbons, mainly olefins
 - 200 250 °C: Co-based cat.
 - Long chain hydrocarbons, mainly parafins



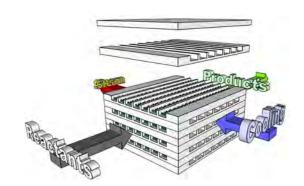
Fischer-Tropsch Synthesis: ASF distribution

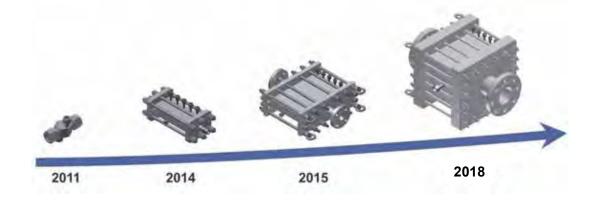

Product distribution can be approximately represented via Anderson-Schulz-Flory (ASF) model – Chain growth probability

$$W_n = n \cdot (1 - \alpha) \cdot \alpha^{n-1}$$

Dr. Francisco Vidal Vázquez - Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop

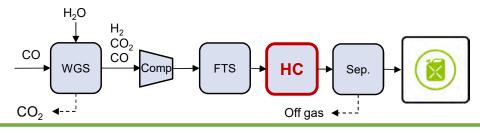
Real FTS product composition using Co-based catalyst

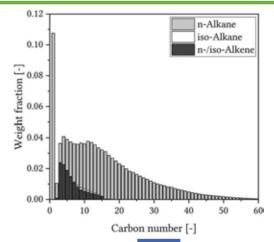

- Higher CH₄ selectivity
- Lower C₂ selectivity
- Olefin formation
- Formation of alcohols (low)

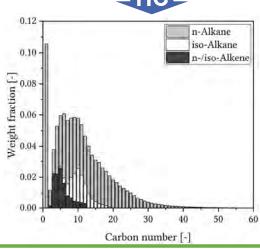

Fischer-Tropsch Synthesis reactor for KEROGREEN

- Microstructured reactor cooled by water evaporation
 - Compact reactor
 - Excellent control of reaction temperature
 - Good performance at wide range of reaction conditions
 - Good performance under dynamic operation

■ Developed at KIT-IMVT → Commercialized and upscaled by INERATEC

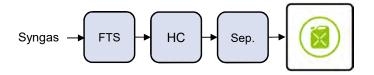

Hydrocracking of heavier FTS products

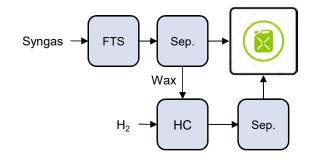



Hydrocracking (HC) basic example reaction:

$$CH_3$$
 CH_3 CH_3 $C_xH_y + C_zH_w$

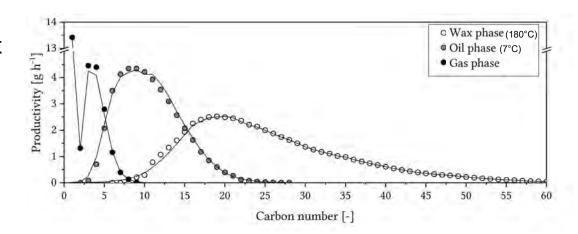
- Typical operating conditions:
 - 250-350 °C
 - 20-50 bar
 - Bifunctional catalyst (Metal/Zeolite)
- Purpose of HC:
 - Increase liquid fuel fraction (remove waxes)
 - Decrease alkene (olefins) content → not applicable to kerosene
 - Increase isomer content → improve cold flow properties


This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

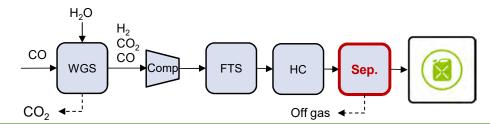


Hydrocracking of FTS products

- HC general considerations:
 - Partial conversion of waxes (C₂₂₊) in order to avoid overcracking
 - Process design considerations:
 - HC of the full FTS outlet:
 - Simpler process configuration
 - Risk of secondary cracking (overcracking) due to CO in the gas phase
 - Cracking of non-wax fraction can happen
 - HC only of the wax phase:
 - More complex process configuration
 - Pure H₂ to the hydrocracker
 - Better product distribution



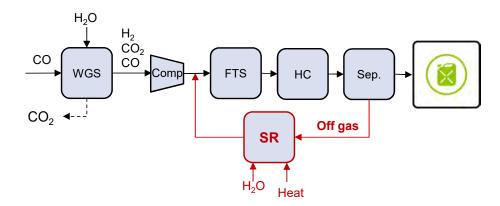
Product separation

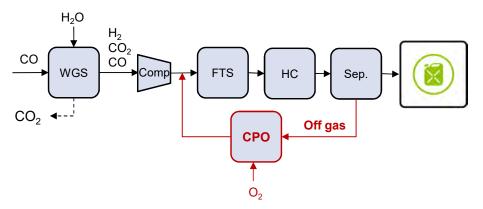

- Flash separation
 - Hot flash (180-220 °C) → Wax product
 - Cold flash (5-10 °C) → Liquid product
 - Rest → Gas phase (Off-gas)

Distillation is required for sharp separation of product

Dr. Francisco Vidal Vázquez - Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop

Kerosene grade only achievable by distillation




Off-gas recirculation

- Off-gas composition \rightarrow H₂, CO, methane, C₂, C₃, C₄, C₅(traces of C₆₊), maybe CO₂ too
- Options for off-gas recirculation:
 - Steam reforming (SR)

Catalytic partial oxidation (CPO).

Summary and conclusions

- Conclusions
 - Not full selectivity to kerosene can be achieved (< 50 %)
 - However, other valuable products such as gasoline, diesel and waxes are obtained.
 - Isomerization stage still might be required to achieve fuel grade
- Other general considerations for process integration
 - Heat and material integration between the different components of the KEROGREEN plant is crucial for maximizing energy and carbon efficiencies
 - Maximize energy and carbon efficiency
 - Difference when using fossil fuels as raw material. Cost structure changes (more OPEX) and plant size changes
 - Techno-economic and LCA analyses are the ultimate test to decide what could be the best option

Francisco Vidal Vázquez

Institute for Micro-Process Engineering, Karlsruhe Institute of Technology Francisco.vidal-vazquez@kit.edu⊠ www.imvt.kit.edu

Acknowledgements:

Tabea Stadler
Peter Pfeifer
Robin Dürrschnabel
Georg Rabsch
Lucas Brübach
Hannah Kirsch

THANK YOU FOR YOUR ATTENTION

RELATED PUBLICATIONS

T. J. Stadler, P. Barbig, J. Kiehl, R. Schulz, T. Klövekorn, and P. Pfeifer, "Sorption-Enhanced Water-Gas Shift Reaction for Synthesis Gas Production from Pure CO: Investigation of Sorption Parameters and Reactor Configurations," *Energies*, vol. 14, no. 2, p. 355, 2021

H. Kirsch *et al.*, "CO2-Neutral Fischer-Tropsch Fuels from Decentralized Modular Plants: Status and Perspectives," *Chemie-Ingenieur-Technik*, vol. 92, no. 1–2, pp. 91–99, 2020

This project has received funding from the European Union's Horizon

INTERNATIONAL WORKSHOP ON CO, CAPTURE AND UTILIZATION TU/E - EINDHOVEN - 16-17 FEBRUARY 2021

Session 3B (chairperson Oana David)

Msc. A. Sliousaregko - Industrial membrane requirements for CO_2 removal from different gas mixtures - Current practices 11:45-12:05 and developments

12:05-12:25 Dr. I. Kim - Technologies demonstration in REALISE

12:25-12:45 Mr. Paul Cobden and Prof. C. Abanades - Pilot preparation for demonstration in the C4U project

12:45-13:05 Mr. T. Swinkels - Decentralized FA based power generators

13:05-13:25 Dr. L. Roses - Design and development of a membranebased post-combustion CO₃ capture system

ORGANIZED BY

SPONSORED BY

Industrial membrane requirements

for CO₂ removal from different gas mixtures -Current practices and developments

Anastasia Sliousaregko, R&D Process Engineer, <u>asliousaregko@dmt-et.nl</u>
Yndustrywei 3, 8501 SN Joure, Netherlands

Who are we?

Our mission: to create a clear and prosperous future

- Engineering firm specializing in biogas upgrading and gas desulfurization
- Over 150 references and more than 30 years of experience
- Global provider of solutions that help build a sustainable future
- Award-winning portfolio

Biogas Upgrading

Carborex**

Gas Desulfurization

Sulfurex*

Membrane industrial requirements

Post-combustion flue gas capture

Natural gas sweetening

Biogas upgrading

For the full state-of-the-art report

Post-combustion flue gas capture

Membrane industrial requirements

Mitigation of CO₂ emissions with (CCS)

- Insufficient incentive for the industrial parties
 - Costly overall process (capture, transport and storage)
 - DAC at low TRL. Delocalized emitters are more expensive
 - CO₂ capture range of 35-60 €/ton higher than EUA of 25-40 €/ton
- CO₂ separation techniques
 - Chemical/Physical absorption (Amines as ref.)
 - o Membrane separation
 - o Adsorption-absorption by solid materials
 - Calcium Looping
 - o Cryogenic distillation

Industrial requirements

- 4-20% CO₂ ingas from power generator
 - Low/Atmospheric pressure
 - Vapour, O₂, SO_x, NO_x, NH₃, ...
 - High flows 40,000 Nm³/h
- To be competitive with amines or 90% CO₂ capture for installed prices not less than 50 €/m²

Petra Nova, Texas US (2016-2019), Amine absorption commercial plant

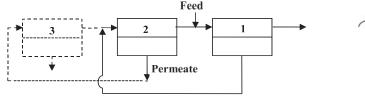
Specifications	Value	Unit
P _{CO2}	>2,250	GPU
CO ₂ /N ₂ selectivity	>30	
Temperature	100	ōС
Design pressure	7	bar
Costs	< 100*	€/m²

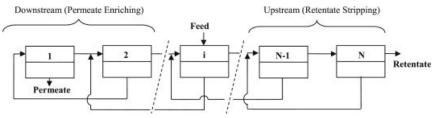
^{*}Target set by the BioCoMem project

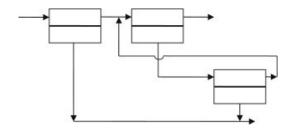
Haibo Zhai (2019)

Other requirements

- Compatibility and stability
- Lifetime


Fabrication and packaging


Fouling


Membrane-based PCC

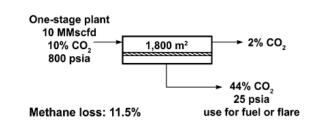
- PIM, PEO, TR, PI high performance polymeric-based membranes
- FSC pilot testings
 - promising under humidified conditions (5 m³(STP)/(m²·h·bar) and $CO_2/N_2 > 500$), NTNU

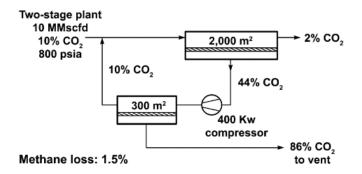
Configurations

Kalipour et al (2015)

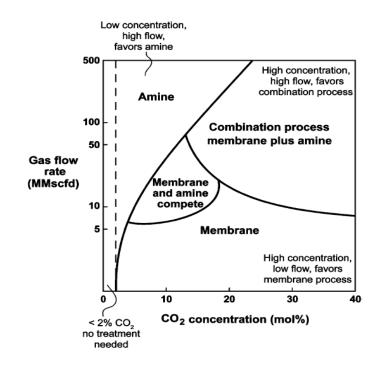
Natural gas sweetening

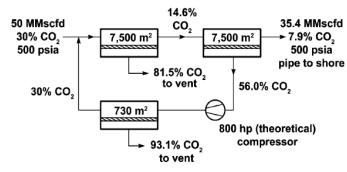
Membrane industrial requirements




Current practices

- Amine scrubbing (higher flows, lower CO₂ concentrations)
- Membrane separation (5-10% market share)
 - Polymeric: CA, PA, PI, perfluoro-polymers
 - Silicone composite
 - Hybrid amine membranes


Configurations


- Pretreatment (plasticization)
 - (aromatics, heavy hydrocarbons, oil mist and particulates)
- 1-stage (gas-wells), 2-stage (higher stream) and 3-stage (off-shore)

Baker, Lokhandwala (2008)

Methane loss: 7%

Industrial requirements

- From ~8% CO₂/ 80% CH₄
 - o H_2O, N_2, H_2S
 - o 20,000 200,000 Nm³/h
 - o Atmospheric pressure
- Grid quality
 - O H-gas: > 96 vol% CH₄
 - o L-gas: 88-92 vol% CH₄
 - Other parameters
 - WI, calorific value, total sulfur, etc
- Permeance and module size
- Asymmetric hollow fibers
- 4 12" module diameter

State-of-the-art materials

- Polymeric (PEBA, PEO-based)
- Facilitated transport
- Composites (Mixed-matrix membranes)
- Carbon molecular sieve

Network	Gas	Pressure	Pressure (Netherlands)
HTL	G-gas and H-gas	usually > 16 bar	> 45 bar(a)
RTL	Mostly G-gas	about 4-16 bar	11 – 40,5 bar(a)
RNB	Mostly G-gas	< 4 bar	9 / 4 / < 4 bar(a)

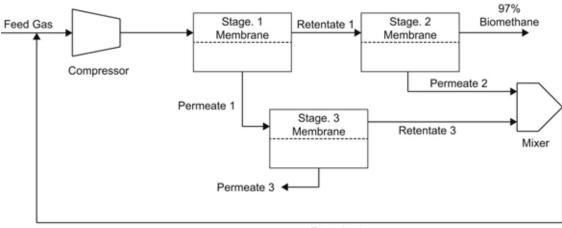
Sweet natural gas	Value	Unit
P _{CO2}	> 100*	GPU
CO ₂ /CH ₄ selectivity	50 [*]	
CO ₂	<2,5	%
Temperature	5-30	ōС
Design pressure	Depends	bar

^{*}Target set by the BioCoMem project

For H-gas grid 80% removal efficiency

Biogas upgrading

Membrane industrial requirements



Current practices

- Water scrubbing
- Membrane separation (36% market share by 2025)
 - Industrially dominant polymeric membranes: CA, Psf, PI
- Chemical scrubbing
- PSA

Configurations

- CH₄ recovery
- Specific energy
- Specific area
- Cost
- Pressure
- Pretreatment

Recycle stream

✓2-stage – 2-4% CH4 slip*

✓3-stage – 0,5-1% CH4 slip*

*Depending on the membrane supplier

Industrial requirements

- From ~45% CO₂/ 55% CH₄
 - o H₂S, siloxanes/VOC, NH3, H₂O
 - o 50 5,000 Nm³/h
- Selectivity
- Grid quality
- Hollow fiber and spiral-wound
- 4 8" module diameter

State-of-the-art materials

- Composites
- MOF
- FSC

Biogas upgrading specifications	Value	Unit	
P _{CO2}	50-100	GPU	
CO ₂ /CH ₄ selectivity	50		
CH ₄ slip	<0.5	%	
Temperature	55	ōС	
Design pressure	14-20	bar	

For H-gas grid 90% removal efficiency – depending the supplier

Thank you for your attention!

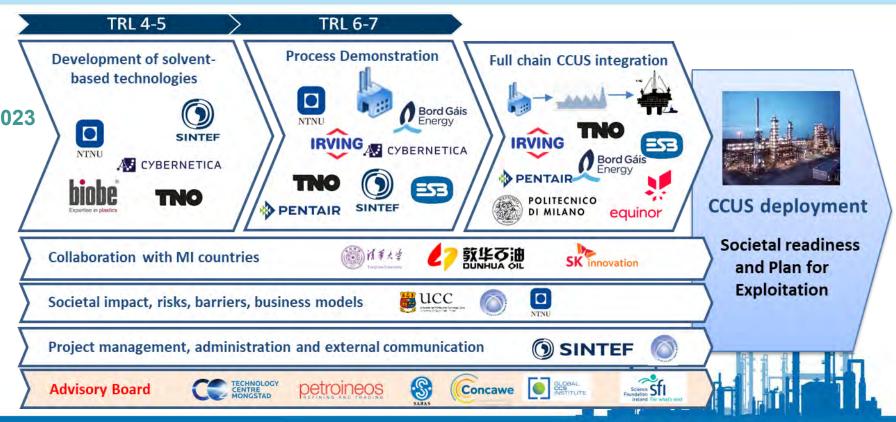
Any questions?

Follow us on social media

and find more about our products and activities

INTERNATIONAL WORKSHOP ON CO2 CAPTURE AND UTILIZATION TU/E - EINDHOVEN - 16-17 FEBRUARY 2021

Technologies demonstration in REALISE project


Inna Kim (SINTEF) and Juliana Monteiro (TNO)

Demonstrating a refinery-adapted cluster-integrated strategy to enable full-chain CCUS implementation - REALISE

- ☐ Project period: 05.2020 04.2023
- **□** Project partners:
 - 14 EU partners
 - 2 partners in China
 - 1 partner in S. Korea
- ☐ Project budget: 7 MEuro

REALISE objectives

Reduction of GHG emissions

Using low-energy
HS-3 solvent →
decrease of the
energy demand of
CO₂ capture by 30%

Increase of cost- and implementation- effectiveness

performance thanks
to efficient solvent
management
active component
losses decreased by

Maximization of

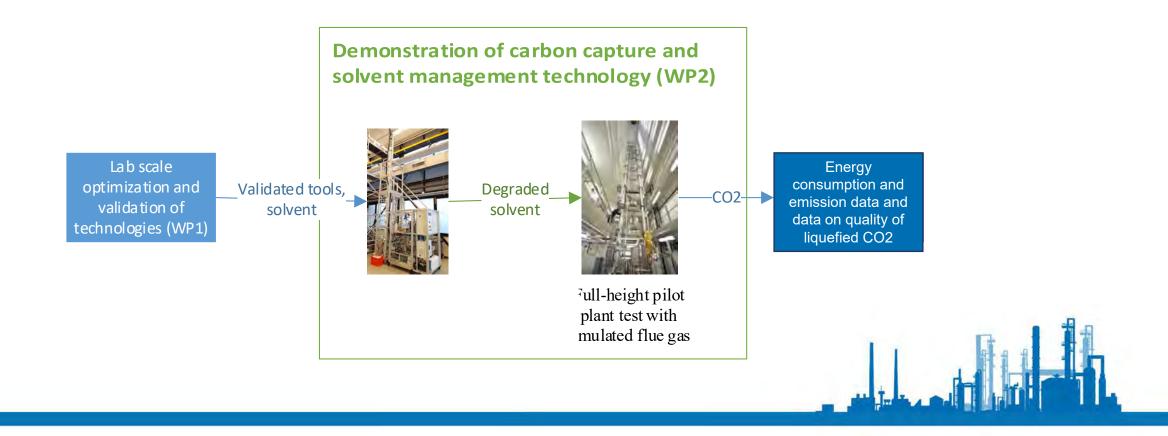
>80%

Use of plastic equipment → lower CO₂ capital costs by 15%

Coupling of available facilities with the power sector
lower the capture costs by at least 30%

Safe, flexible and guided-choice regarding CO₂ capture scenarios thanks to an openaccess simulation tool

Projection of cost reduction for retrofitting CO₂ capture to refineries



[&]quot;Utilities" include steam demand in the capture plant;

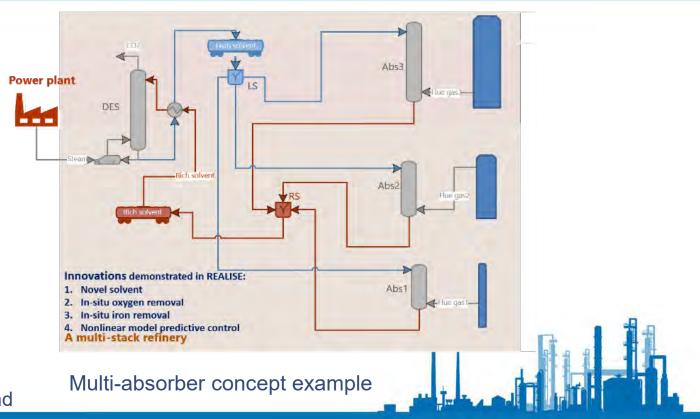
REALISE Innovation	Type of reduction	Reduction in capture costs	
REALISE IIIIIOVALIOII		\$ / ton _{CO2 avoided}	%
Use of plastic as packing material in the absorber	CAPEX	8	4
Reduced degradation by using DORA and IRIS	OPEX	8	4
Sector coupling and optimal integration and operation	CAPEX and OPEX	24	12
Novel free-to-operate solvent with low energy requirement	OPEX	20	10
TOTAL		60	30

[&]quot;Interconnecting" means integration of capture plant with both refinery and power plant

REALISE methodology for scaling up and demonstration of carbon capture and solvent management technologies from TRL 4-5 to TRL 6-7

REALISE innovations

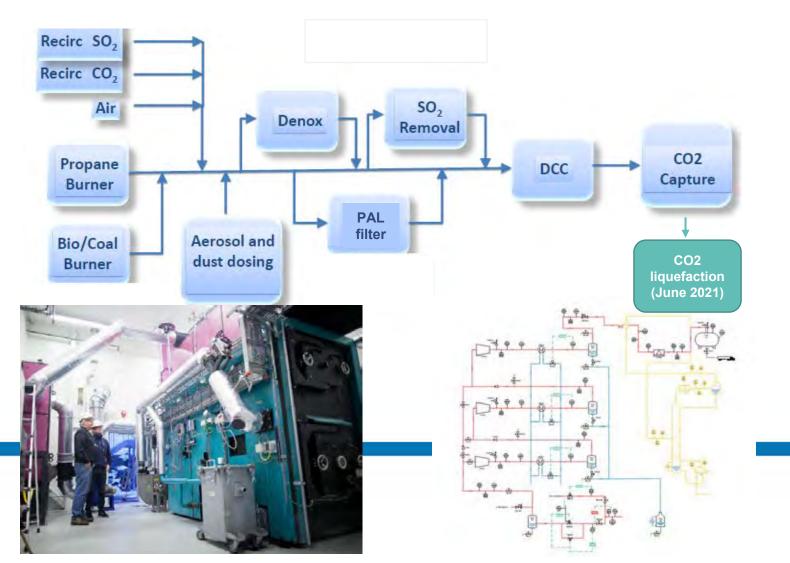
- □ Novel low energy solvent for CO₂ capture from different flue gases
 - Free-to-operate CO₂ capture solvent developed by NTNU and SINTEF (FP7 HiPerCap)
- □ Solvent management (to reduce solvent degradation and emissions):
 - Oxygen removal, DORA (patented by TNO)
 - Iron removal, IRIS (patented by TNO)
 - Plastics as material of construction, packing, etc.
- Process integration
 - Nonlinear model predictive control (NMPC developed by SINTEF and Cybernetica)
 - Open-access simulation tool for assessing CO₂ capture strategy at refineries
- Social studies
 - Education and Public Engagement program (Univ. Colledge Cork, see presentation by Dr. Niall Dunphy

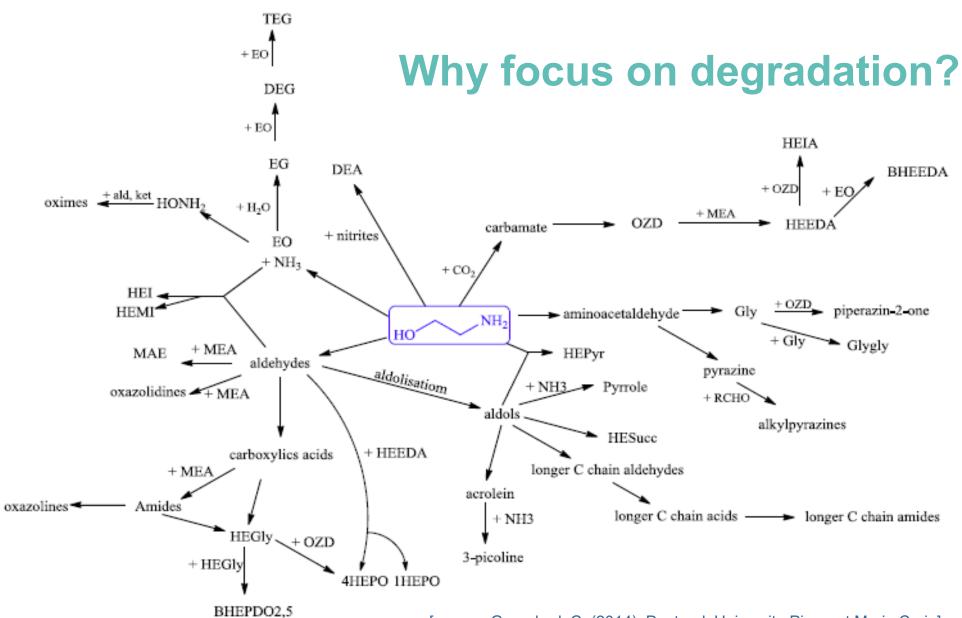

DORA prototype (TNO)

Multi-absorber concept in REALISE

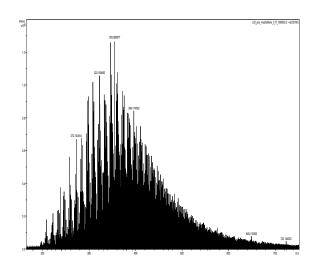


REALISE sector-coupling concept for Irving Oil Whitegate refinery and power stations in Cork, Ireland

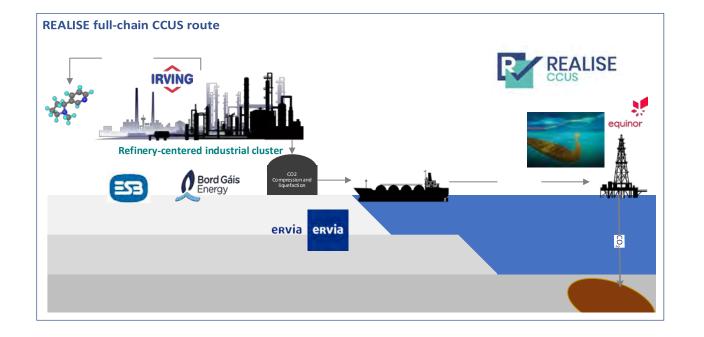

ATEX-proof mobile pilot fot testing onsite operating refinery


International workshop on CO2 capture and utilization, TU Eindhoven, 16-17 Feb 2020

Full-height CO₂ capture pilot plant

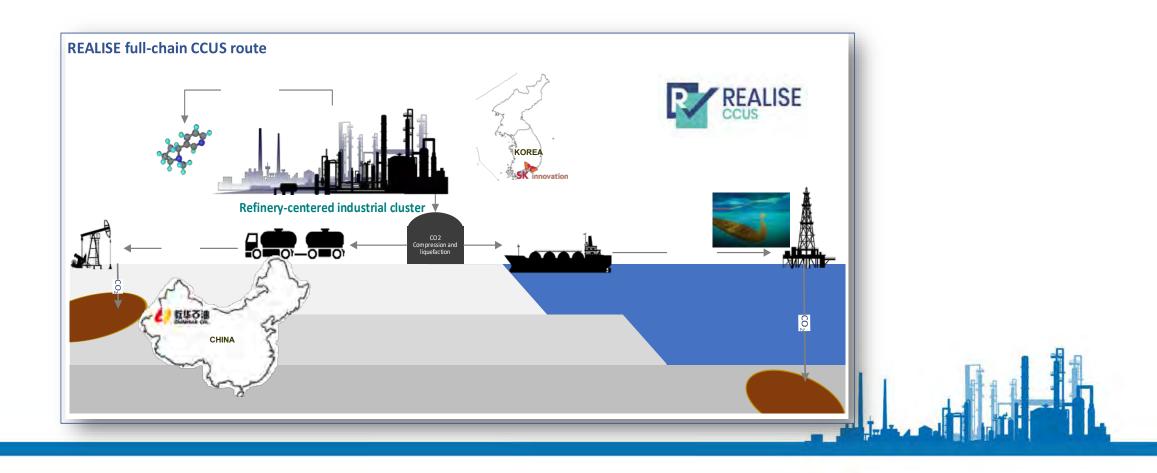


Advanced chemical analysis



Sampling of the cleaned gas from absorber (earlier project)

REALISE business cases: Ireland



Phase 1 of Northern Lights

(https://ccsnorway.com/wp-content/uploads/sites/6/2020/07/Plan-forlong-term-use-of-the-Northern-Lights-infrastructure-1.pdf

Business cases in REALISE: China and South Korea

Stakeholders' engagement in REALISE

Industry Club

External experts Advisory Board

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884266

Thank you for listening

Presenter

Presenter Name Inna Kim

Presenter Email inna.kim@sintef.no

@realise-ccus
www.realiseccus.eu
info@realiseccus.eu

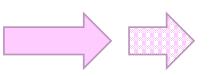
International Workshop on CO₂ Capture and Utilization

Pilot preparation for demonstration in the C4U project

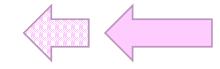
17 February 2021

The contents of this presentation are the sole responsibility of *Swerim and partners* and do not necessarily reflect the opinion of the European Union.

Paul Cobden & Carlos Abanades



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884418


C4U IS TYPICAL GOES ATYPICAL C4U IS GOOD ATYPICAL

CaLCalcium
Looping

SEWGS
SorptionEnhanced
Water
Gas Shift

Pre-combustion Capture

HIGH TRL MEANS UTILISING INDUSTRIAL SITES/GASES FOR DEMONSTRATION

Asturias

+17°C

CASOH

Ca-Cu

1°C/mm

4000 km

1°C/100km

Luleå

-24°C

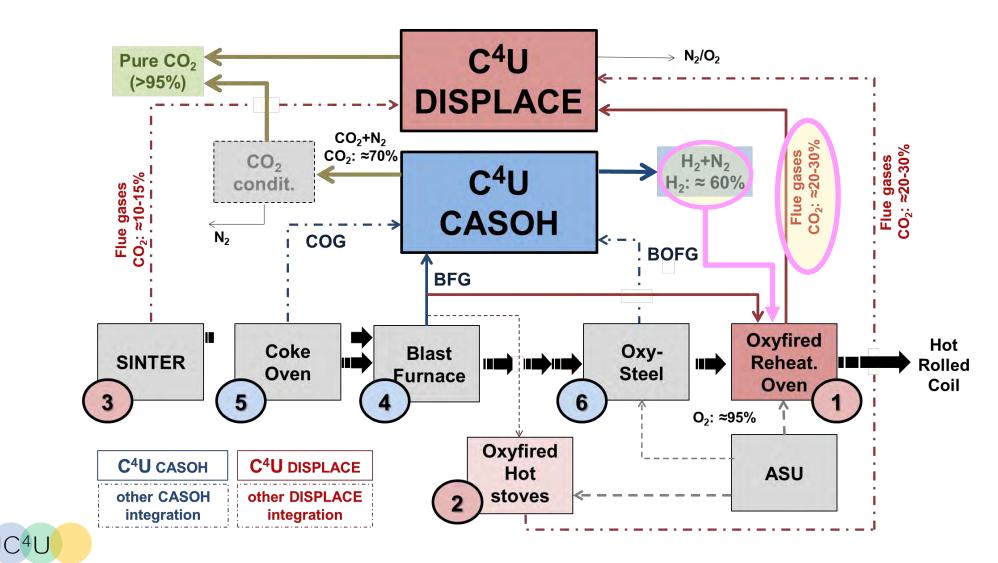
DISPLACEHydrotalcite

1°C/cm

Pre-combustion testing

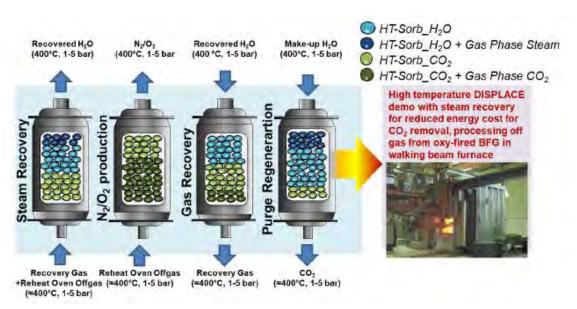
STATUS OF PILOT PREPARATIONS

Similar Activities

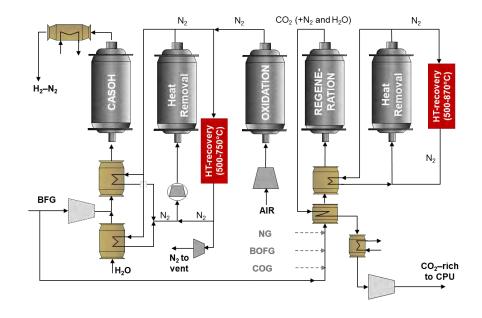

- Both CASOH and DISPLACE will have 2000 hrs of demonstration at high TRL
- Most activities in 2020 and 2021 are engineering, procurement, construction
- DISPLACE has much of the equipment in place, and the linking of the unit is the main task
- CASOH requires a new pilot installation and building

Status

- Both CASOH and DISPLACE have achieved their respective deliverables on the basis of design
 - Special attention has been paid to the equipment delivery timeline
- Mass balances and operational philosophy of pilot
- All of the responsibilities of all of the involved partners in the different stages
 - Including delivery of the materials for testing, hydrotalcites, WGS catalysts, Ca-based sorbent and Cu-based materials
- Both CASOH and DISPLACE have delivered basic engineering and have started detailed engineering


HOW DO TECHNOLOGIES FIT WITHIN C4U?

DEMONSTRATION OF CO₂ CAPTURE PROCESSES IN STEEL MILLS

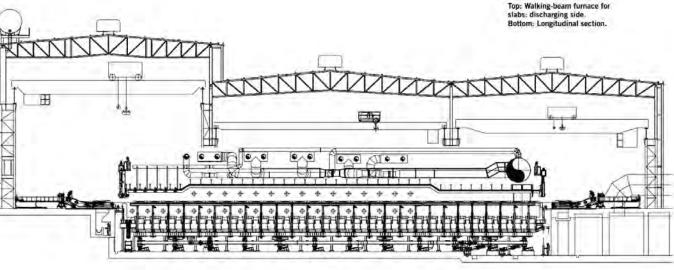

DISPLACE design:

Define the optimal sizing, number and configurations of the DISPLACE process, so to reduce the capture costs and to minimize the steam use while attaining the CO₂ purity target in the real scale plant.

CASOH design:

Provide overall M&H balance, Provide the large scale reactor size, and dynamic operation modelling, Calculate the performance of the single process, Provide the final design based on the experimental campaign at TRL7

DISPLACE TECHNOLOGY OBJECTIVES

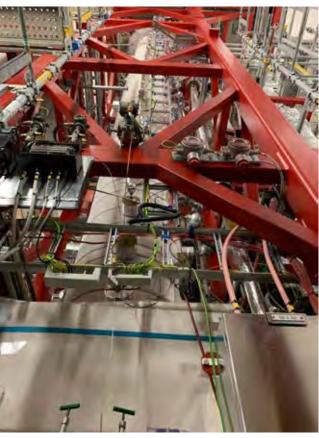

2 x 1000 hr campaigns

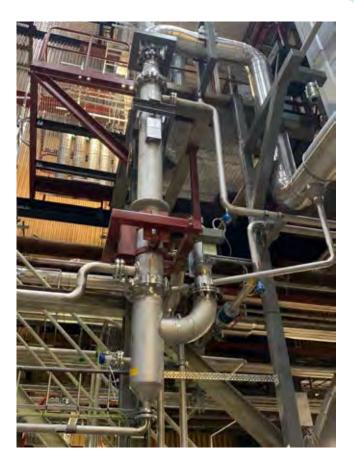
- ∘ N₂-H₂ Campaign, separation of H₂ from BFG, and subsequent H₂ use in chamber furnace
- DISPLACE Campaign, oxy-combustion of BFG in walking beam furnace, and CO₂ capture of oxy-combusted BFG

WHAT ARE REHEATING OVENS?

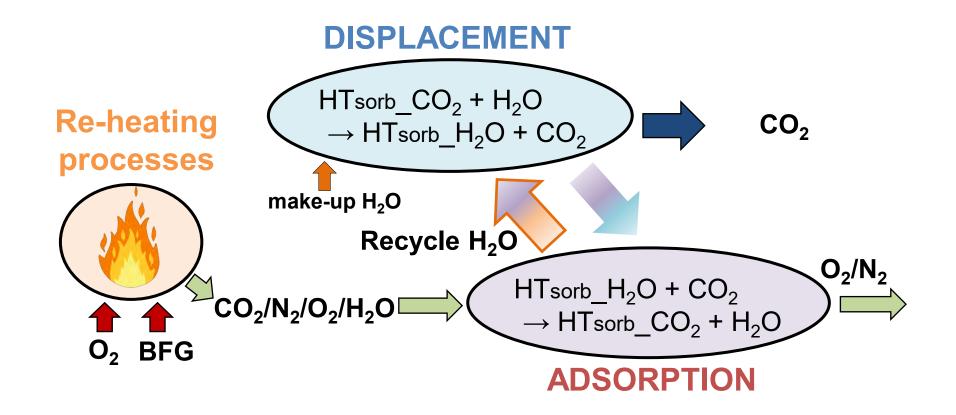
2.4 MT/y WBF



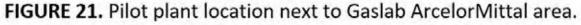


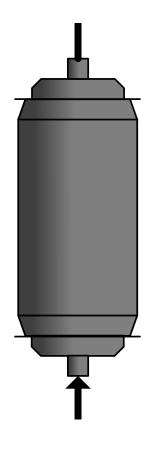

DISPLACE: CO₂ CAPTURE EQUIPMENT

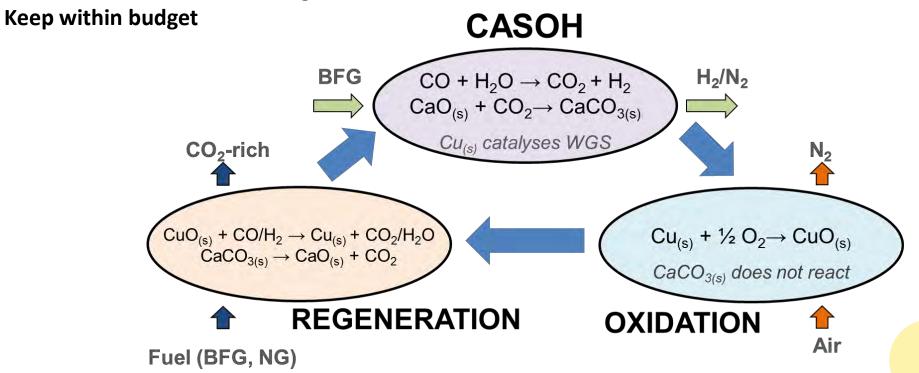
WGS (for N₂/H₂ campaign)


Single Column for N₂/H₂ Single Column DISPLACE

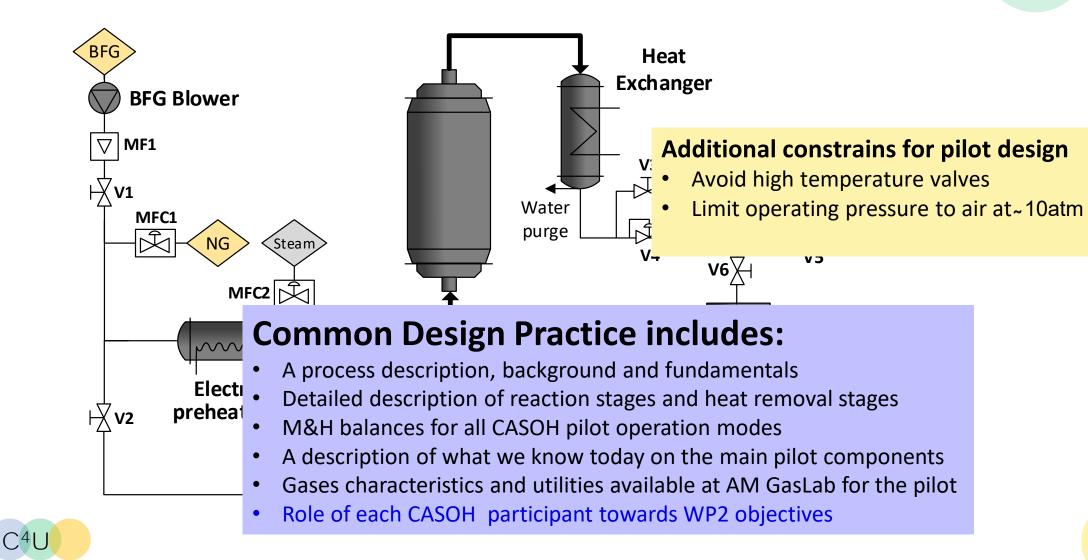
Syngas Cooler


DISPLACE PROCESS

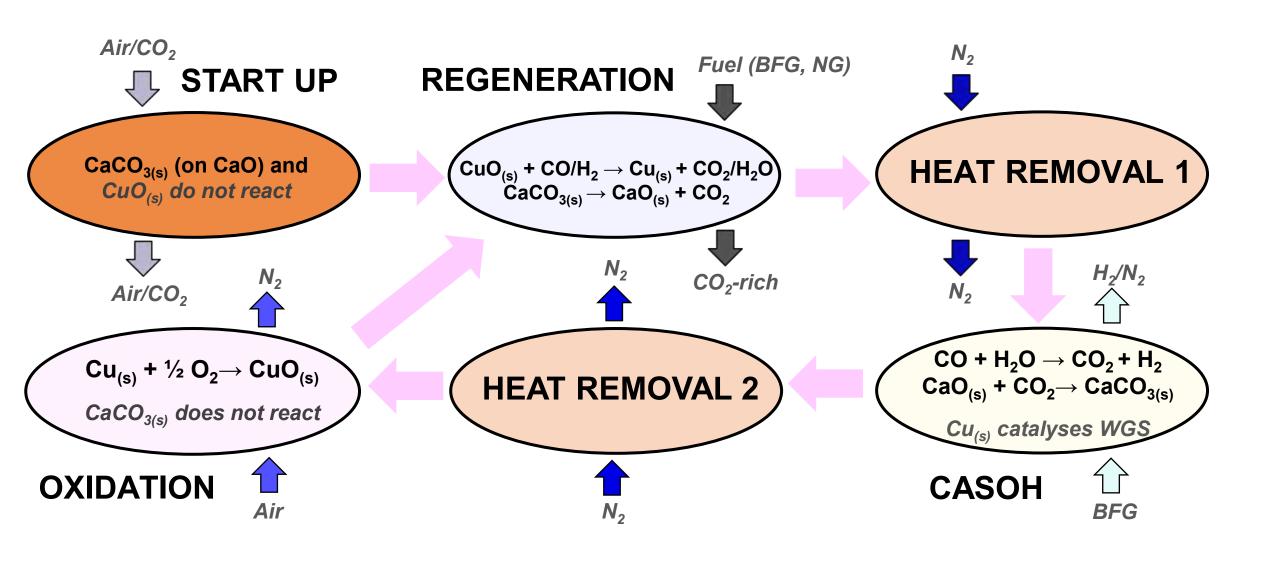

CASOH: Future location of the pilot at the AMA GasLab



CASOH REACTIONS FOR BLAST FURNACE GAS


Main drivers for pilot design

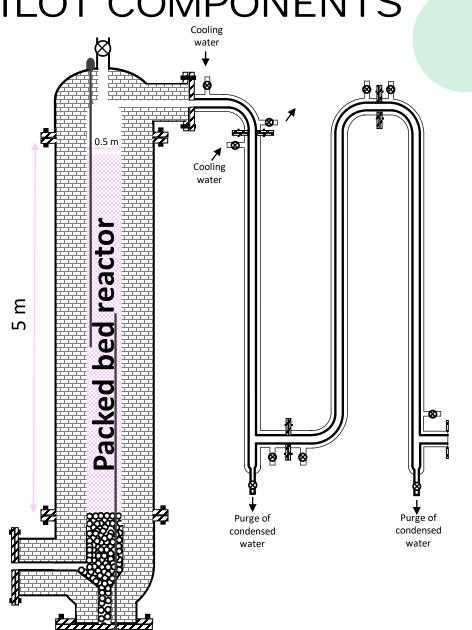
- A single packed bed reactor is the core of the pilot
- Demonstration of reaction stages is a priority (i.e.: vs the heat removal stages)
- High TRL scale (defined as 0.3 MW_{LHVofH2} + 0.7 MW_{th} as HT heat from regeneration)
- Indicative dimensions: 5 m height, 0.5 m I.D.



Process Flow Diagram of CASOH pilot

FULL OPERATION SEQUENCE IN THE PILOT

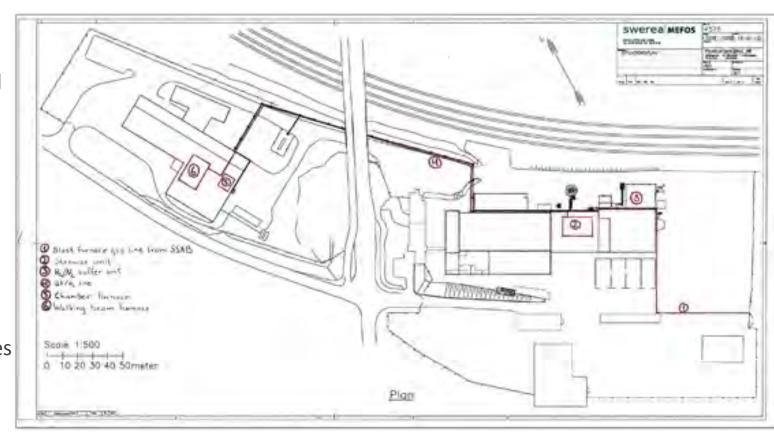
DESIGN STATUS OF MAIN PILOT COMPONENTS


Bed characteristics CaO active, %w 10 Cu active, %w 30 Particle size,mm 3

Reactor characteristics			
Height, m	5		
Diameter, m	0.5		
Cu/Ca molar	1.8		
Mass Ca-, kg	900		
Mass Cu-,kg	600		
Total bed mass, kg	1500		

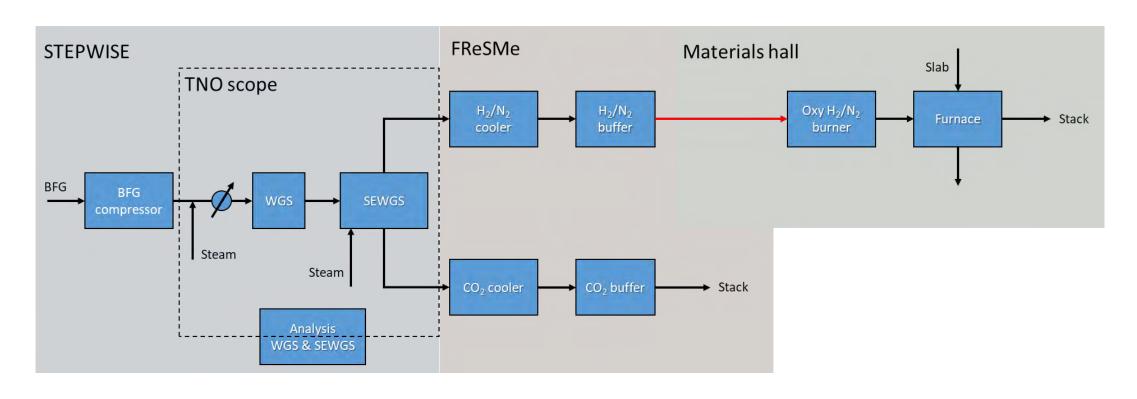
Samples of candidate materials from Carmeuse and Johnson Matthey received for lab. testing

CONFIDENTIAL


DISPLACE CDP & BOD : COMMON DESIGN PRACTICE AND BASIS OF DESIGN

CDP

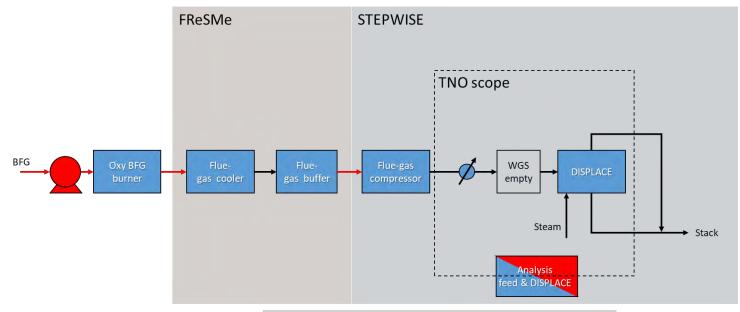
- Describes all partners activities and responsibilities for all partners involved in building and operating the pilot plant
- i.e. a more detailed description of scope compared to the DoA

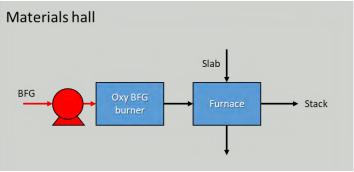

BOD

- Initial layout of equipment (see right)
- Mass and Energy flows and balances to drive basic engineering phase

CONFIDENTIAL

CPD & BOD N₂/H₂-CAMPAIGN




Campaign 1: N₂/H₂ – SEWGS Campaign

CONFIDENTIAL

CPD & BOD - DISPLACE CAMPAIGN

STATUS OF PILOT PREPARATIONS

Similar Activities

- Both CASOH and DISPLACE will have 2000 hrs of demonstration at high TRL
- Most activities in 2020 and 2021 are engineering, procurement, construction
- DISPLACE has much of the equipment in place, and the linking of the unit is the main task
- CASOH requires a new pilot installation and building

Status

- Both CASOH and DISPLACE have delivered their respective deliverables on the basis of design
 - Special attention has been paid to the equipment delivery timeline
- Mass balances and operational philosophy of pilot
- All of the responsibilities of all of the involved partners in the different stages
 - Including delivery of the materials for testing, hydrotalcites, WGS catalysts, Ca-based sorbent and Cu-based materials
- Both CASOH and DISPLACE have delivered basic engineering and have started detailed engineering

SYNERGIES BETWEEN CASOH AND DISPLACE

CASOH

Coke Oven Gas

Basic Oxygen Furnace Gas

Blast Furnace Gas

N₂-H₂ product as fuel

DISPLACE

Sinter Plant Exhaust

Hot stoves

Reheating Furnaces

Blast Furnace Gas processed by CASOH

International Workshop on CO₂ Capture and Utilization

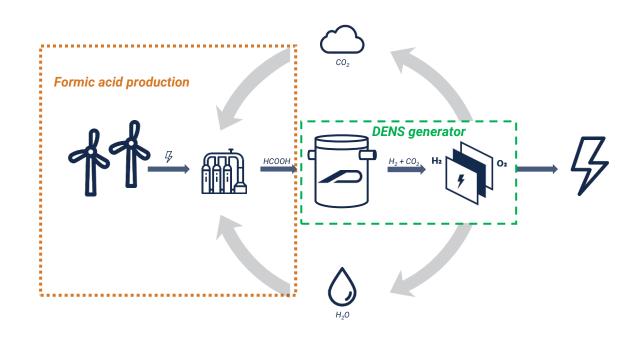
Pilot preparation for demonstration in the C4U project

17 February 2021

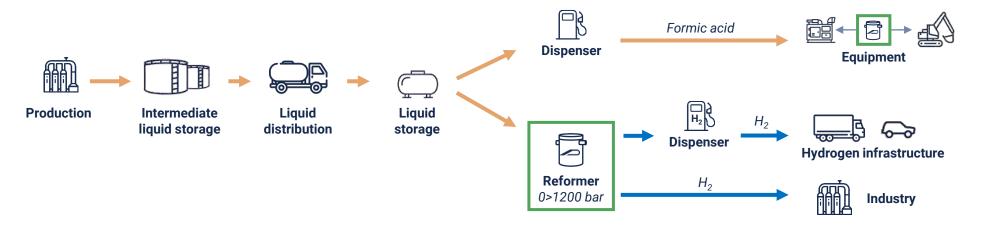
The contents of this presentation are the sole responsibility of *Swerim and partners* and do not necessarily reflect the opinion of the European Union.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884418

About DENS



CO2 neutral energy carrier



Formic acid reconversion value proposition

By using DENS' reformer technology, hydrogen's storage and transport issues can be easily overcome.

The hydrogen economy with DENS

Storage and transport of formic acid, is significantly cheaper and safer, and therefore accelerates the hydrogen economy. DENS can convert formic acid back into hydrogen for direct use in a fuel cell or to allow for hydrogen generation on demand from liquid storage.

Current hydrogen economy

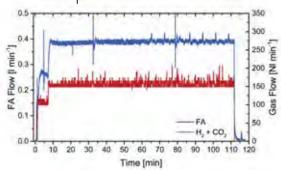
Storage and transport of gaseous hydrogen is highly expensive and therefore limiting the adoption of the hydrogen economy.

DENS generator technology

Reformer technology

Hydrozine

H2


H2

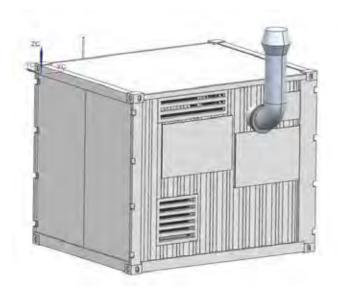
Puel cell technology

H2

Puel cell technology

✓ Instantaneous reaction at low temperature

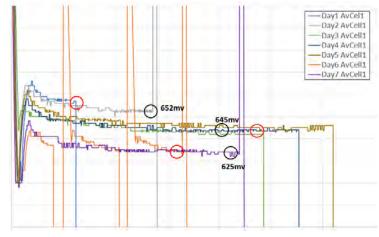
- ✓ Very little impurities
- ✓ Works up to 1200 bar


- ✓ Low temperature PEM
- ✓ Broadly certified stack
- ✓ Mass produced by BOSCH

Results

First field tests are being preformed

- Gas quality stays good to keep using the fuel cell also outdoors
 - CO production well below given target of fuel cell
 - FA levels are also well below given target value of fuel cell
- Stable reformer production for over 1000 hours
- 10 kw of nominal power achieved for at least 200 hours
- System optimalisations are being performed
- New insights in lifetime optimilisation are being tested
- Start and shutdown behaviour is being investigated


Results

Electrical components

- System has converted all the power to the local grid, enough for 20 households during tests
- Safety components have been checked by Lloyds and CE marking was checked
- Subsystem was tested and was capable of handling 30 kw's of power Degradation
- Some degradation is witnessed not during runs but inbetween and not always

- Different Shut down and start procedures are being investigated together with partners, possible solutions are being tested (mainly due to emergency

stops)

Planning

Tests are going to be performed at the end of the project at dk6 in Dunkirk

- Safety documents are being completed together with Engie
- Prelimary tests are being performed to solve start stop degradation
- Reformer components are being evaluated to make sure all wear and tear is being recorded and noted

Formic acid versus hydrogen

Hydrogens adoption barriers can be overcome via the liquid organic hydrogen carrier (LOHC) Formic acid in combination with DENS' reformer.

Adoption barriers

- 1. Pressurized gas storage
 - × Compressed at 200-700 bar.
 - \times Liquified at -253 °C.
 - × Elevated safety risks.
 - × Expensive compression cost.
- 2. Gaseous distribution
 - × Expensive tube trailers.
 - \times Only 360kg H₂ per trip.
- 3. Compression required
 - Mechanical compression is required for refueling.
 - × Expensive compression cost.

Barrier breakers

- 1. Liquid storage
 - ✓ Ambient pressure.
 - ✓ Limited to no safety risks.
 - ✓ Affordable liquid pumping.

- 2. Liquid distribution
 - ✓ Affordable liquid trailers.
 - ✓ 4x more per trip (1431kg H₂).

VS.

- 3. Hydrogen production on demand
 - ✓ Chemical compression up to 1200 bar.
 - ✓ No additional energy required.
 - ✓ 100% renewable.

Design and development of a membrane based post-combustion CO₂ capture system

Workshop on CCUS 16-17 / 02 / 2021 www.iwccu.org

Leonardo Roses

Contact: <u>leonardo.roses@hygear.com</u> <u>www.hygear.com</u>

HYGEAR

Outline

- Introduction to HyGear
- ➤ Introduction on CO₂ emissions
- Processes for CO₂ Capture
- MEMBER objectives
- Design requirements for demonstration at industrial site
- Design and development of post-combustion CO₂ capture system
- Conclusions and final remarks

FACTS AND FIGURES

Established in 2002

With the mission to develop cost-effective gas supply

82

Highly motivated employees with an entrepreneurial and innovative spirit

14

patents securing a sustainable competitive edge

Active in **20 countries**

Industries that we are active in

Flat/float glass manufacturing
Metal sintering
Food
Electronics
Semiconductor
Fuelling station for vehicles

> €23m

Gross revenue

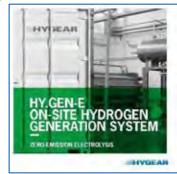
66

Installations operational worldwide

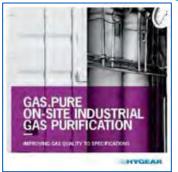
> 85,000 kg

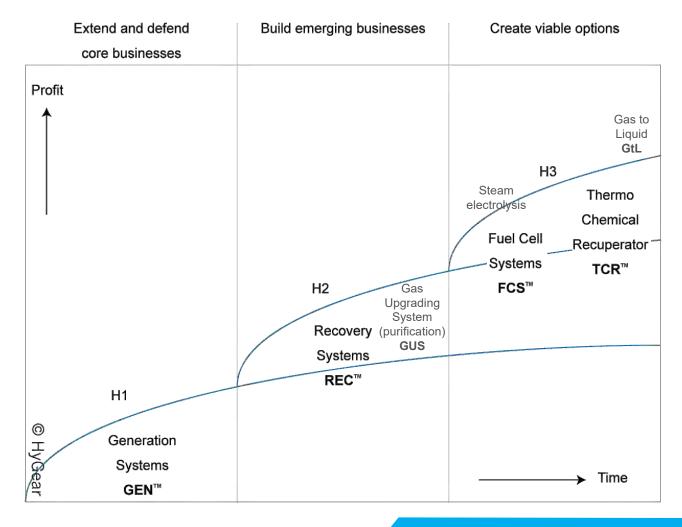
CO₂ reduction per customer per year with breakthrough technologies

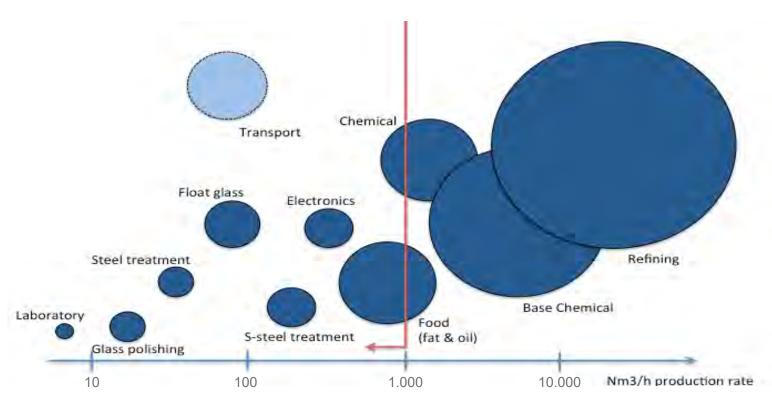
PRODUCTS & SERVICES


DELIVERING GASES THROUGH ON-SITE TECHNOLOGY

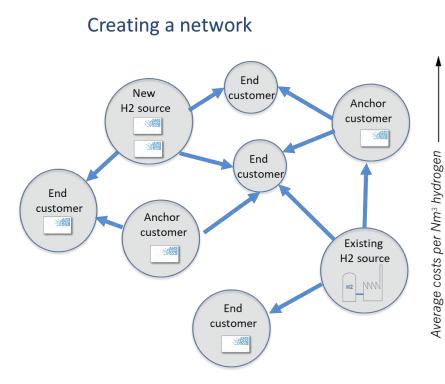


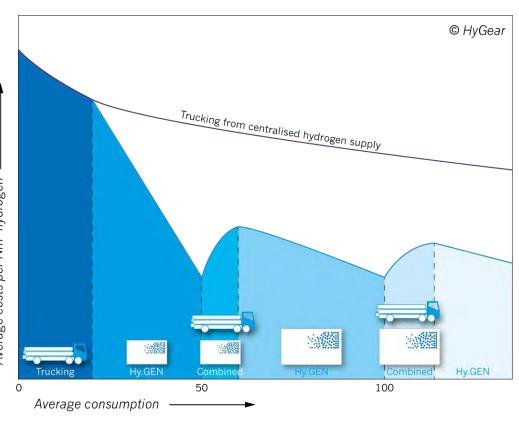


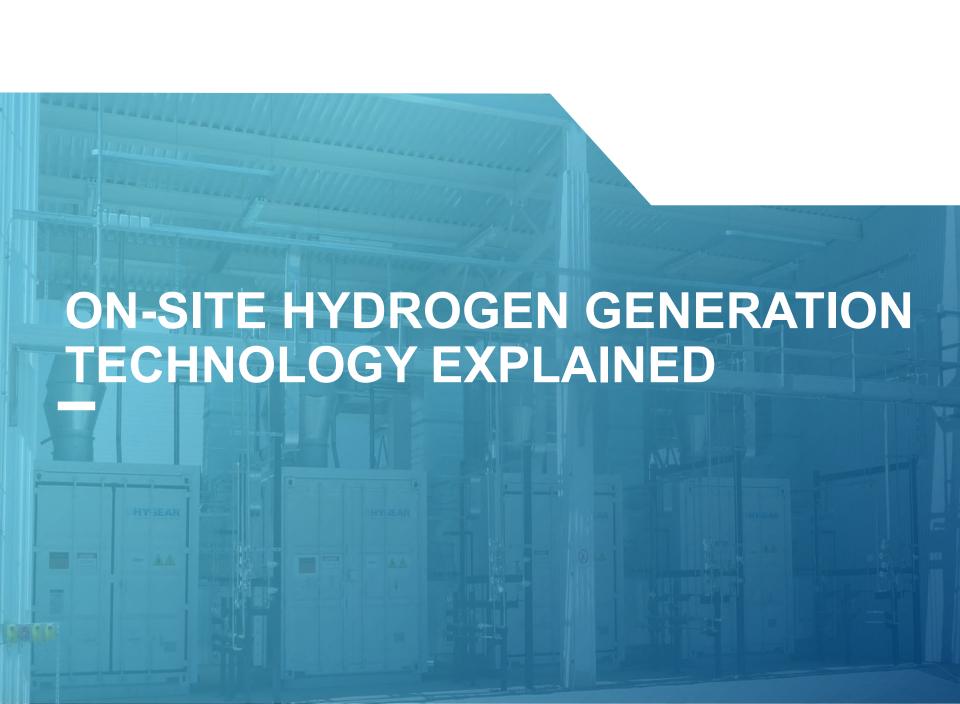




DEVELOPMENT STRATEGY

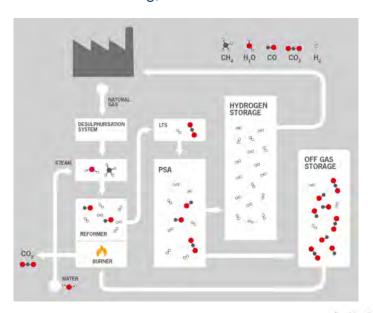



HYDROGEN MARKET



Bron: Air Liquide

THE MERITS OF ON-SITE SUPPLY


HYDROGEN TECHNOLOGY EXPLAINED

The unique strength of Hy.GEN® SMR-technology:

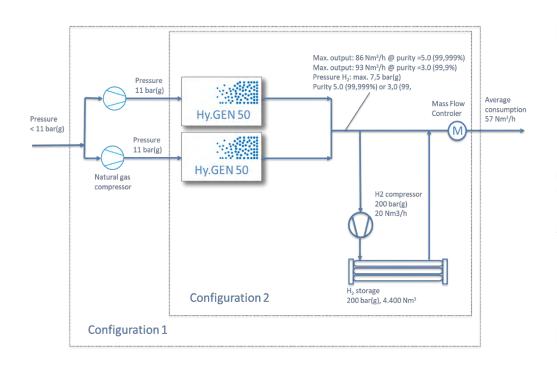
•Hy.GEN® Steam Reforming needs 0.5 Nm³ Natural gas per Nm³ H₂

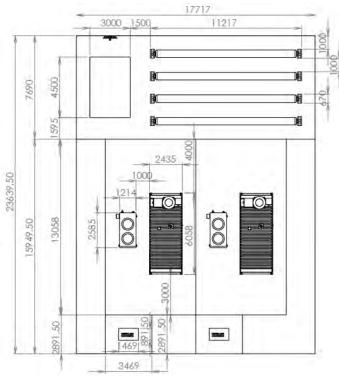
When compared to other supply methods:

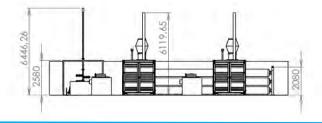
- •Electrolysis; that needs 6.5 kWh Electricity per Nm³ H₂
- •Trucking; that needs 40 tons of truck to move 300 kg of gas

- 1. Ventilation fan
- 2. Desulphurisation vessel
- 3. PSA-vessels
- 4. Off-gas storage

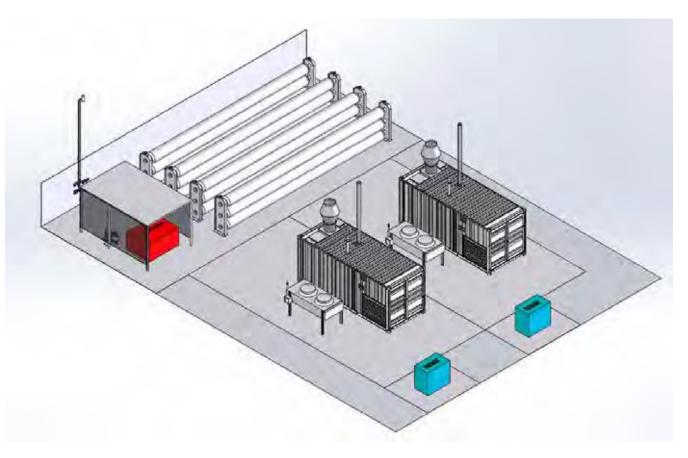
- 5. Hydrogen storage
- 6. Water separator for vacuum pump
- 7. Vacuum pump
- 8. Coolant heater

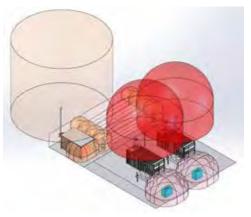

- 9. Reformate cooler
- 10. Electronics cabinet
- 11. Steam generator
- 12. Reformer unit


- 13. Low temperature shift
- 14. Coolant expansion vessel
- 15. Burner air blower
- 16. Water purification system


HY.GEN MODELS

MODEL	Hy.GEN® 50	Hy.GEN® 100	Hy.GEN® 150
OUTPUT			
Nominal H ₂ flow	Max. 47 Nm ³ /h	Max. 94 Nm ³ /h	Max. 141 Nm³/h
Hydrogen Purity Range	99.5 – 99.9999 %	99.5 – 99.9999 %	99.5 – 99.9999 %
Pressure Range	1.5 – 7.5 bar(g)	1.5 – 7.5 bar(g)	1.5 – 7.5 bar(g)
TYPICAL CONSUMPTION DATA			
Natural Gas	Max. 23 Nm ³ /h	Max. 46 Nm ³ /h	Max. 69 Nm ³ /h
Electricity	12.5 kWe	22.5 kWe	25 kWe
Water	100 l/h	200 l/h	300 l/h
Compressed air	Max. 3 Nm ³ /h	Max. 6 Nm ³ /h	Max. 9 Nm ³ /h
DIMENSIONS			
Size	20 ft.	40 ft.	40 ft.
Weight	6,500 kg	10,000 kg	12,000 kg
OPERATING CONDITIONS			
Start up time (warm)	Max. 30 min	Max. 30 min	Max. 30 min
Start up time (cold)	Max. 3 hours	Max. 3 hours	Max. 3 hours
Modulation (H ₂ product flow)	0 – 100 %	0 – 100 %	0 – 100 %
Modulation Reformer (output)	10 – 100 %	10 – 100 %	10 – 100 %
Ambient Temperature Range	-20 °C to +40 °C	-20 °C to +40 °C	-20 °C to +40 °C


TYPICAL CONFIGURATION GLASS PLANT



TYPICAL CONFIGURATION GLASS PLANT

SAINT GOBAIN L'ARBOC, SPAIN

DUZCE CAM, TURKEY

PHILIPS LUMILEDS TURNHOUT, BELGIUM

WALMART TEXAS, USA

HYGEAR HYDROGEN FILLING STATION IN THE NETHERLANDS

SUMMARY OF KEY BENEFITS

- Industrial Gas supplier in small bulk
- Ability to design, install and operate the supply
- Highest security of supply by on-site generation with trucked back up
- Against the lowest costs due to advanced technologies

FLEXIBLE CONTRACTING

	BUY	GAS-AS-A-SERVICE (GAAS)
Equipment investment	Customer	HyGear
Infrastructural preparations	Customer	Customer
Installation & commissioning	HyGear	HyGear
Equipment operation	Customer	Customer
Service including system monitoring assistance	Contract option available	HyGear
Maintenance	Contract option available	HyGear

FLEXIBLE CONTRACTING

YOUR BENEFITS:

NO FINANCIAL INVESTMENT

NO ADDITIONAL RESOURCES NEEDED

YOU CAN CHOOSE...

NO SURPRISES

R&D PROJECTS

MEMBRANE PROJECTS

Hy2SEPS2

H₂ mem+PSA hybrid system

DEMCAMER

 O₂ mem ATR, O2 mem OCM, H₂ mem WGS, H₂O mem FTS

REFORCELL

H2 mem for NG ATR

FERRET

H₂ mem for flexible feedstock gas ATR

M4CO2

• H₂ mem (pre-comb); CO₂ mem (post-comb)

FLUIDCELL

H₂ mem for EtOH ATR

MEMERE

O₂ mem

HyGrid

H₂ mem separation

MEMBER

• H₂ mem (pre-comb); CO₂ mem (post-comb)

R&D PROJECTS

EXAMPLES

PBI fuel cell system

Membrane reformer system

Gas purification of waste water treatment

PSA systems

Advanced MEMBranes and membrane assisted procEsses for pre- and post- combustion CO₂ captuRe

MEMBER

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 760944

Introduction on CO₂ emissions

- \triangleright CO₂ is the undesired by-product of hydrocarbon conversion processes and the product of combustion in power production, building heating, transportation, etc.
- $ightharpoonup CO_2$ emissions from stationary system come mostly from power production (~80 %), while cement, refinery, steel and petrochemical contribute for about 20 % [1].
- The first objective of CO_2 capture is the decrease of anthropogenic CO_2 emissions. In parallel there is an effort to develop potential CO_2 applications that could, at least in part, economically support the deployment of CCS technologies

PROCESS	CO ₂ emissions 10 ⁶ metric ton / year	% on the Total
Power production	10,539	78.8 ~80 %
Cement production	932	7.0
Refineries	798	6.0
Iron and steel industry	646	4.8
Petrochemical industry	379	2.8 ~20%
Oil and gas processing	50	0.4
Other sources	33	0.2

CO₂ demand and potential

- ➤ The potential for CO₂ utilisation is substantial
- \triangleright Existing uses and demand of CO_2 :
- Purification requirements vary widely

Existing uses	Brief description	Future potential non-captive CO ₂ demand (MTPA)	Minimum purity
Enhanced oil recovery (EOR)	CO ₂ acts as a solvent that reduces the viscosity of oil fields, enabling it to flow to the production well.	30 < demand < 300	90 %
Food	CO ₂ used in different applications, including packaging (modified or controlled atmosphere packaging), cooling while grinding powders, food spoilage prevention by acting as an inert atmosphere and dry ice as refrigerant to prolong food storage	~15	99.9 %
Beverages	Carbonation of beverages with high-purity CO ₂ .	~14	99.9 %
Refrigerants	Used as working fluid in refrigeration plants, especially for industrial air conditioning and refrigeration systems.	<1	99.9 %
Industrial	Used for steel manufacturing, metal working, welding and other applications.	<1	99.5 %
Storage	CO ₂ sequestration		95 %

Processes for CO₂ Capture

 \triangleright In combustion processes CO₂ can be captured via three different routes:

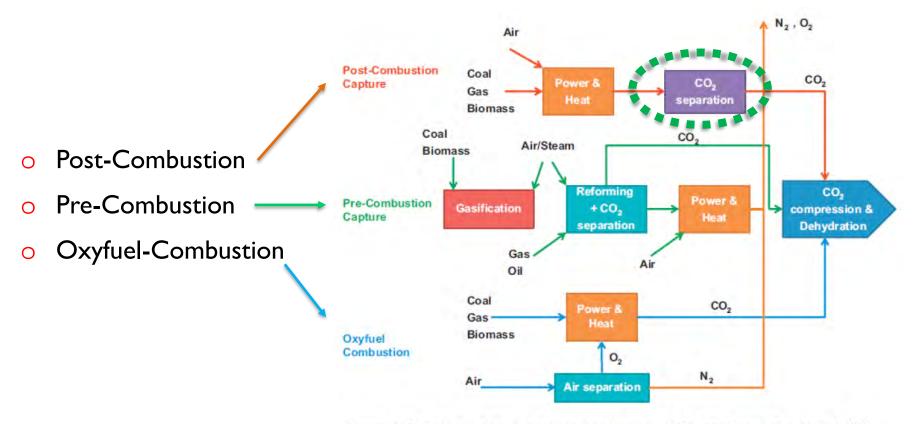


Figure 1. Schematic conceptual representation of CO₂ capture technologies [12].

Benchmark process for post-combustion CO₂ Capture

- At large scale and low CO₂ content in the feed, chemical absorption is the most widespread technology. This is the benchmark technology for the MEMBER project
- It is applied in many industrial units such as ammonia production and gas processing and in some existing CCS applications (mainly aimed at EOR)
- Physical absorption and adsorption are more suitable at smaller scales and/or when CO₂ partial pressure in the feed is sufficiently elevated. The absorption/regeneration process (both chemical and physical) is by far the most widespread technology for CO₂ separation from gaseous streams.
- For a detailed description of benchmark technologies and industrial requirements, visit public deliverable D2.2 available at the MEMBER website.

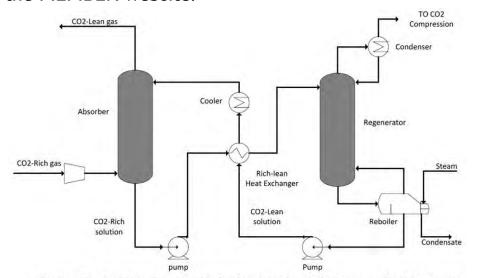
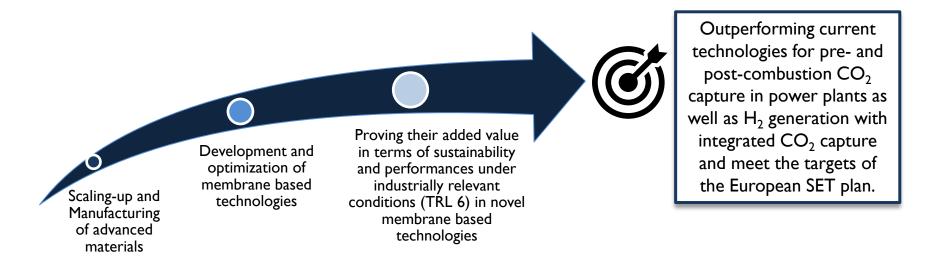


Figure 2. Typical flowsheet of a basic chemical absorption process for CO₂ capture.

Membrane based CO₂ separation for post-combustion capture

- Perm-selective membranes are thin barriers that allow selective permeation of certain gases
- \triangleright Driving force for permeation is the CO₂ partial pressure, hence flue gas compression may be required, depending on the gas conditions
- In MEMBER we develop hollow fiber (HF) membrane modules permeable to CO₂, offering important advantages, such as high packing density (>10,000 m²/m³), resistance to high pressure difference, and contained fabrication costs
- For post-combustion CO₂ capture (CO₂/N₂ separation) thin film Pebax polymer based composite hollow fibers are being prepared by dip coating of porous hollow fiber supports. Metal Organic Framework (MOF) will be in the outside coating selective layer



MEMBER Objectives

 \triangleright The main objective of the MEMBER project is the scale-up and manufacturing of advanced materials and technologies, aimed to reduce the cost of CO₂ capture.

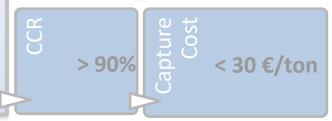
- > Each solution is going to be demonstrated through the operation and test of a prototype
- Scale-up issues are addressed during the project and a Business Plan is prepared for the industrial application of each technology.

MEMBER Objectives

- ➤ Reference and Target Performance and Cost for the MEMBER processes
- \triangleright The target CO₂ purity for MEMBER process is 95 %.

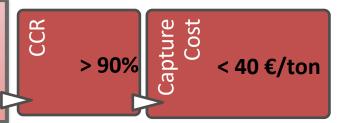
	Reference Technology	Reference CCR [%]	Reference Cost of CO ₂ [€/ton]	MEMBER Targets for CCR [%]	MEMBER Targets for Cost of CO ₂ [€/ton]
Pre-comb. Power (IGCC)	Absorption by SELEXOL	90.9	33.0	90	< 30
Post-comb. Power (Coal)	MEA absorption	88.1	54.3	90	< 40
Hydrogen via SMR (NG) +CO ₂ pre- comb. capture	MDEA absorption	56	47.1	90	< 30
Hydrogen via SMR (NG) +CO ₂ post- comb.capture	MDEA absorption	90	69.8	90	< 30

MEMBER Objectives



Prototype A

Pre-combustion capture in power plants using MMMs at the 2 MWth biomass gasifier of CENER (Spain) aimed for BIOCCS demonstration.



Prototype B

Post-combustion capture in power plants using MMM at the 8.8 MW CHP facilities of Agroger (GALP, Portugal).

Prototype C

Pure hydrogen production with integrated CO2 capture using MA-SER at the IFE-HyNor (Norway) under the supervision of ZEG POWER.

System demonstration at industrial site

Demo Site: AGROGER CHP plant - property of Galp Energia - Portugal

- o Galp Energia is a vertically integrated multi-energy operator operating in the oil and natural gas business and as a producer and seller of electricity for industrial and home consumption.
- AGROGER CHP plant consists of 2 sets of natural gas fuelled power-generators providing up to 8.8 MWe of power, plus heat to users in the area

System requirements

Main materials and process targets:

Target MMM	Value	Unit
CO ₂ permeance	300	GPU
CO ₂ /N ₂ selectivity	70	-
Membrane area	10	m ²
Design pressure	7	bar(g)
Membrane cost	<100	€/m²
Target process	Value	Unit
CO ₂ recovery	90	%
CO ₂ purity	95	%

System requirements

Other design conditions:

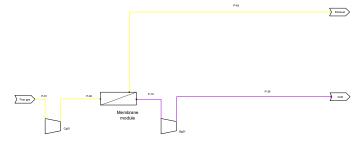
- > Feed flow 10 Nm³/h.
- Atmospheric supply pressure
- Composition:

Species	% molar
CO ₂	5.8 %
H ₂ O	3.7 %
02	10.0 %
N_2	80.5 %
Total	100 %

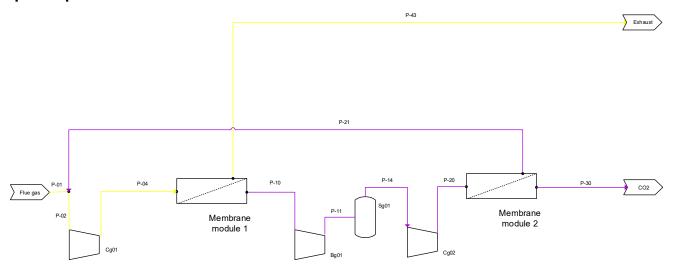
Selectivities:

CO ₂ /H ₂ O	1
CO ₂ /O ₂	28
CO_2/N_2	70

➤ I or 2 stage layout



System design and development



Modelling different layouts

- Single stage layout;
 - CO₂ purity target not reached, neither without nor with recirculation

- Dual stage layout
 - \triangleright CO₂ separation membrane #1 = 94 %
 - \triangleright CO₂ separation membrane #2 = 57 %
 - Vacuum pump on permeate membrane #I

System design and development

Modelling sensitivity to membrane permeance

Permeance (GPU)	CO ₂ rec.	CO ₂ purity
300 (nominal target)	>90 %	>90 %
200	86 %	>90 %
100	67 %	>90 %

- * Cases with constant pressure at 4 bar
- > CO₂ recovery is reduced if permeance decreases
- Purity is not compromised
- Countermeasure would be to increase operating pressure to maintain CO₂ recovery

Permeance (GPU)	CO ₂ rec.	CO ₂ purity	Pressure membranes stages # 1/2 (bar)
300 (nominal target)	>90 %	>95 %	7/6
200	>90 %	>95 %	9/9
100	>90 %	>95 %	14 / 14

System design and development

Modelling sensitivity to membrane selectivity

 \triangleright Selectivity S [CO₂/N₂]

S [CO ₂ /N ₂]	CO₂ recov.	CO ₂ purity
70	90.6 %	93.5 %
40	90.6 %	90.0 %

^{*} S to N_2 and H_2O left unchanged. Cases at 4 bar.

Purity is affected by a decay in selectivity

Conclusions and final remarks

- The prototype for post-combustion CO₂ capture will be demonstrated in an industrially relevant environment, allowing validation of the performance and stability of the technological solutions and materials.
- Prototype design with two stages meets targets of CO_2 purity >95 %, and recovery >90 %
- Membrane module stage #2 is smaller than membrane module stage #1
- Maximum operating pressure 7 bar(g)
- Selectivity is very important to reach the purity targets
- In case of lower permeance, we need to increase the operating pressure
- System design is finalised, and assembly is ongoing.
- System will be installed in 10 ft container

Design and development of a membrane based post-combustion CO₂ capture system

Workshop on CCUS 16-17 / 02 / 2021

Thank you for your attention

https://member-co2.com/


Contact:

<u>leonardo.roses@hygear.com</u>

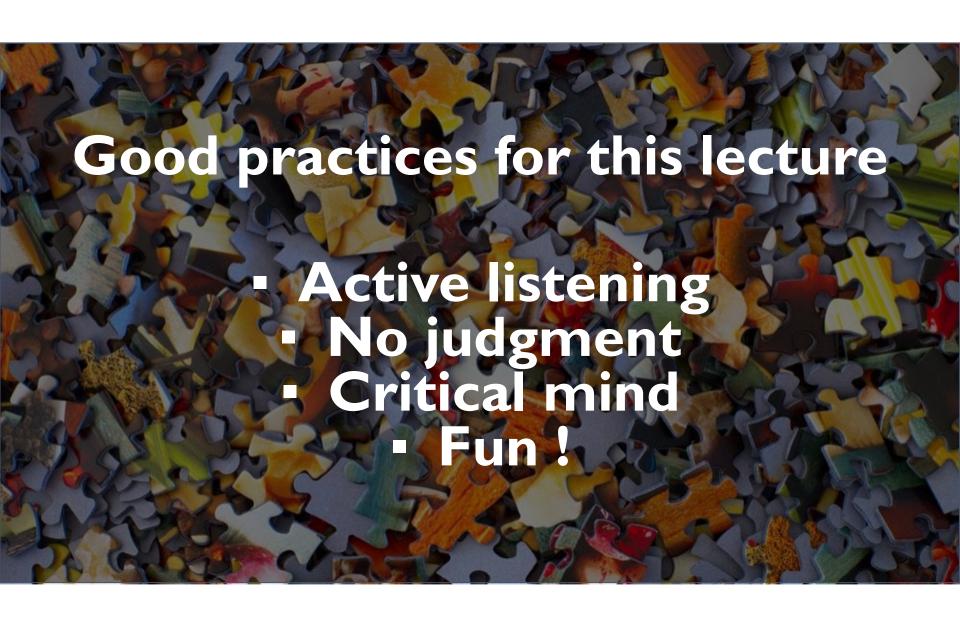
www.hygear.com

Bio-based copolymers for membrane end products for gas separations

This project has received funding from the Bio Based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme, under grant agreement No 887075.

The JU receives support from the European Union's Horizon 2020 research and innovation program and the Bio Based Industries Consortium

WP6: Technical, Economical, REACH and LCA assessments, circularity and plastic footprint


HOW SCIENCE-BASED ACTIONS CAN POSITIVELY CHANGE THE INDUSTRY'S IMPACT

Stefan Frehland Nicolas Habisreutinger

Quantis

OBJECTIVE OF THE LECTURE

- ✓ Understand key environmental issues
- ✓ Master LCA core concepts and methodology to be able to understand and pilot and/or conduct LCA studies
- ✓ Understand the methodological approach (assumptions, calculation methods, scope), evaluate the robustness of the results and the conclusions presented
- ✓ Be able to integrate Life Cycle Thinking into your everyday work

01 What is LCA?

02 Goal & Scope definition

103 Life Cycle Inventory

O4 Life Cycle Impact Assessment

01

WHAT IS LCA?

Eco-design is defined as the

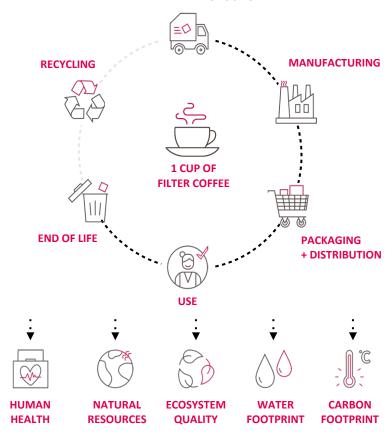
integration of environmental perspective into products' and services' design and development.

THE LCA APPROACH

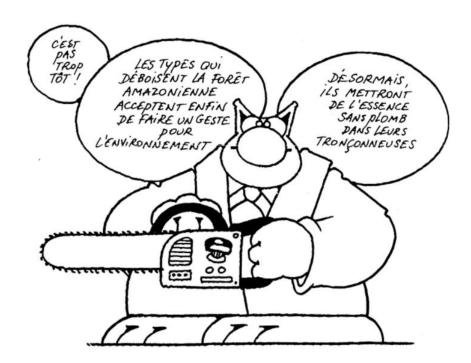
Life Cycle Assessment is recognized as the leading methodology for environmental impact evaluation. The main strengths of this tool are the following:

Metrics-based approach, allowing impact evaluations and/or comparisons to be made on a quantified and credible scientific basis.

Life-cycle oriented, allowing users to consider various product stages, to highlight potential 'burden shifting', or unintended consequences.


Multi-criteria: we are aligned with the PEF guidance, and cover a multiplicity of indicators in the assessment (including water use, ecotoxicity, ozone depletion, etc.)

See the whole Focus on the right Get to part


Get the facts right

Decide and act

RAW MATERIAL PRODUCTION

FOCUS ON THE RIGHT PART

It's not too early!

The guys felling trees in the Amazon have finally accepted to do something for the environment.

From now on, they will use unleaded fuel in their chainsaws!

QUESTION YOU ASK YOURSELVES

See the whole picture

Focus on the right part

Get the facts right

Decide and act

rocery bags?

•

es from trees, not oil...

being over-used!

ipped from Brazil!

astic comes from China...

aper fiber is partly recycled!

es from US corn!...

ghs less!

plastic?

LCA IS A GOOD DECISION MAKING TOOL

Identify environmental issues along the value chain (hotspots)

Identify improvement possibilities and production optimization

Compare alternatives

Set goals and measure progress

Benchmark performance

Manage risk

Communicate

And more

LIFE CYCLE ASSESSMENT (LCA) HAS MANY CLEAR BENEFITS

See the whole

Focus on the right part

Get the facts right

Decide and act

Get the facts right

- Offer appropriate solutions
- Avoid shifting the burden between life cycle stages, regions, compartments or type of impact

See the whole picture

- Iterative, step-by-step process looks at the complete life cycle
- Quantitative and robust tool
- Compare product alternatives

Focus on the right part

- Find environmental hotspots along the value chain
- Define priority actions
- Encourage supplier engagement

Decide, act and share

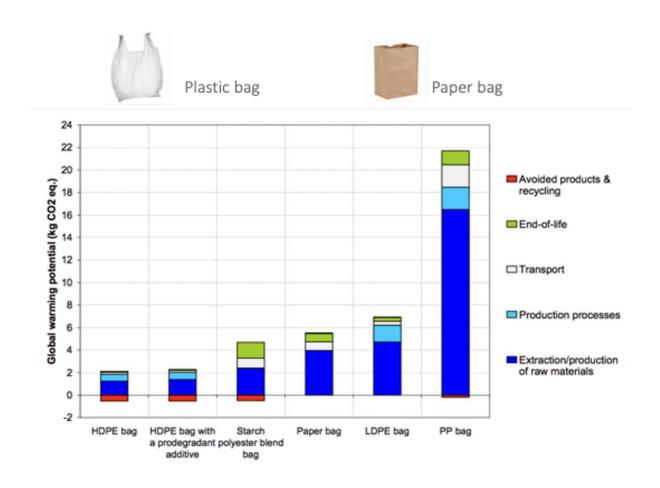
- Set smart strategy
- Communicate to customers and consumers
- Facilitate conversations with stakeholders

WHAT ARE THE BENEFITS OF LCA?

The holistic perspective of LCA helps prevent shifting the burden

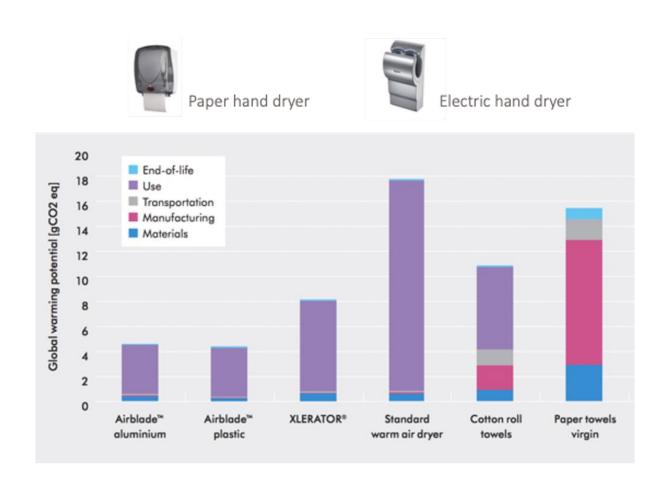
Or are emissions simply shifted?

Shifts can happen:

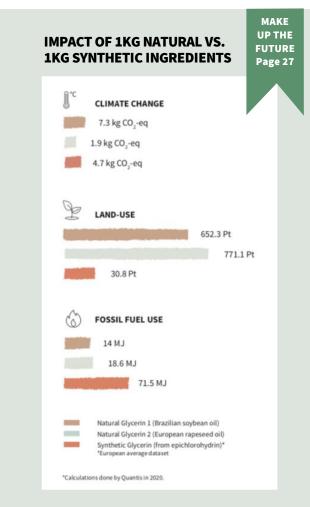

- From one life cycle stage to another
- From one region to another
- From one compartment (water, air, ground) to another
- From one impact to another (social or economical for instance)

Plastic bag

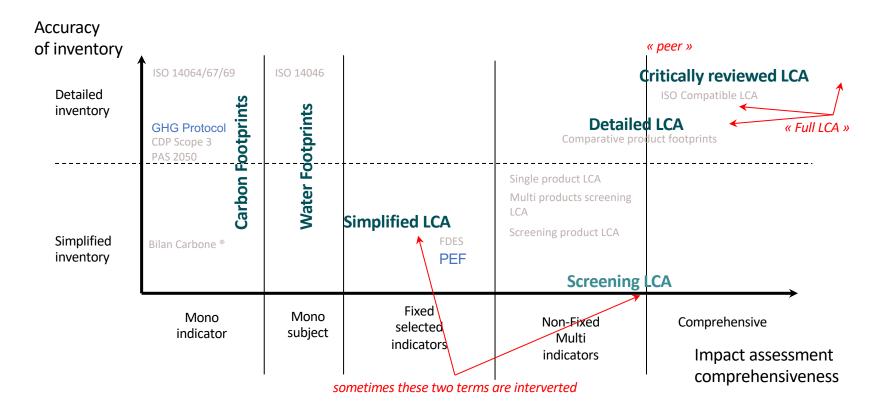
Paper bag



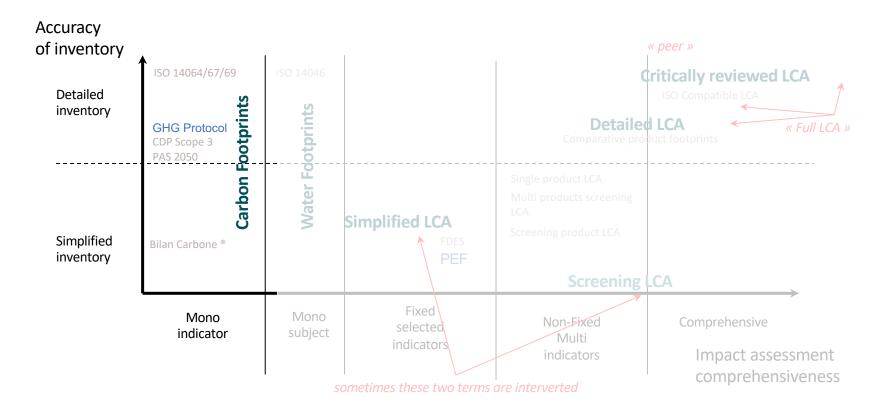
Paper hand dryer

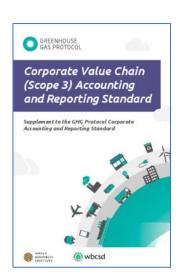


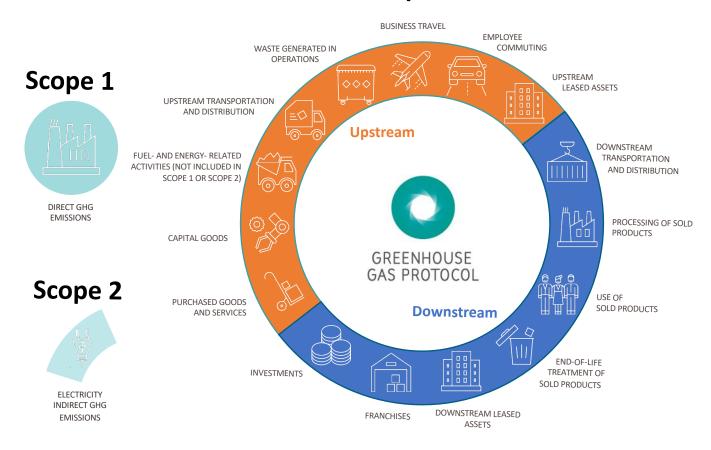
Electric hand dryer


NATURAL VS. SYNTHETIC INGREDIENTS

- Consumer demand for natural beauty products is on the rise
- Natural = Sustainability: it's not that simple
- Need to consider the whole life cycle of a formula + its ingredients across multiple environmental criteria




TYPES OF LCA / STUDIES


TYPES OF LCA / STUDIES

GHG PROTOCOL STANDARD

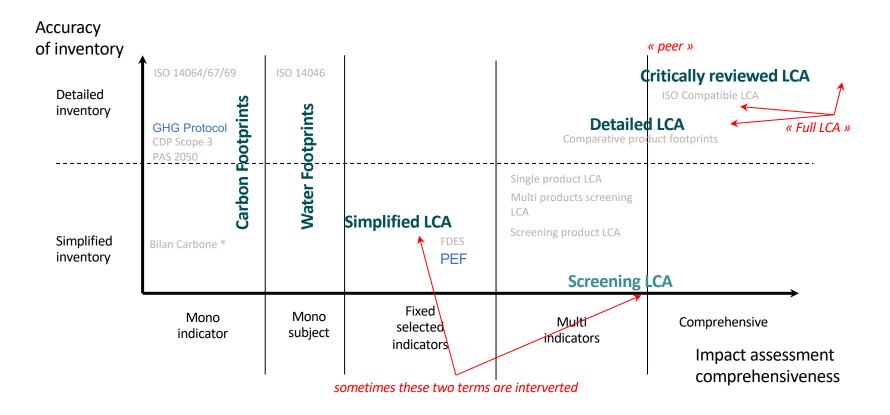
Scope 3

GHG PROTOCOL: SCOPES DEFINITION

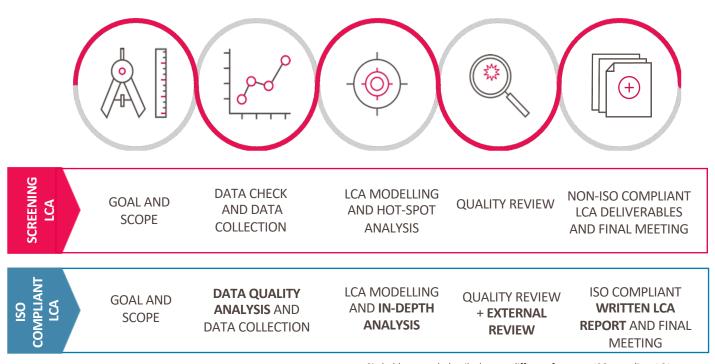
Scope 1: Direct emissions

These occur from sources that are owned or controlled by the company, for example emissions from combustion in owned or controlled boilers, furnaces, vehicles, etc. or emissions from chemical production in owned or controlled process equipment.

Scope 2: Electricity and heat indirect GHG emissions


This accounts for GHG emissions from the generation of purchased electricity and heat consumed by the company (emissions from GHG sources that we consume but which production we cannot control).

Purchased electricity is defined as electricity that is purchased or otherwise brought into the organizational boundary of the company. Scope 2 emissions physically occur at the facility where the electricity is generated.


Scope 3 : Other indirect GHG emissions

This is a reporting category that allows for the treatment of all other indirect emissions. Scope 3 emissions are a consequence of the activities of the company but occur from sources not owned or controlled by the company. Some examples of Scope 3 activities are the extraction and production of purchased materials, the transportation of purchased fuels and the use of sold goods and services.

TYPES OF LCA / STUDIES

WHAT ARE THE DIFFERENT STEPS TO CONDUCT AN LCA?

^{*}in bold approach details that are different from non-ISO compliant LCA

LCA OPTIONS AND COMMUNICATIONS

	Give internal teams insights into comparative claims	Identify parts of the life cycle where your product performs better or needs improvement	Show impacts of different life cycle stages	Communicate externally about your own product footprint across different indicators	Communicate externally about your own product footprint versus other products of your own portfolio across different indicators	Communicate externally about your own product footprint versus other products
Screening Product		/	/	/		
Screening comparative LCA	\	~	\		\	
Full comparative ISO-compliant LCA (peer reviewed)	\	\	/	~	\	\

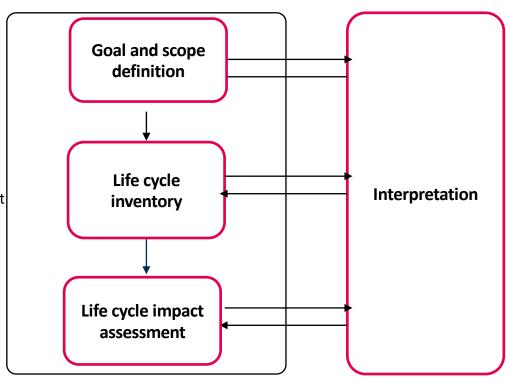
THE LCA FRAMEWORK YOU NEED TO KNOW

ISO NORMS 14 040 + 14 044 (2006) FOR LCA

Goal and scope

The functional unit
The system boundaries

Inventory analysis


Tools and software Inventory data and databases

Impact assessment

The synthetic nature of impact assessment Avoiding tradeoffs (e.g., single indicator)

Interpretation

Numbers are not enough

02

GOAL & SCOPE DEFINITION

GOAL AND SCOPE

The scope includes the following items:

- Product system to be studied
- •Functions of the product system or, in the case of comparative studies, the systems
- •Functional Unit (FU) and reference flow
- System boundaries
- Allocation procedures
- •Impact categories selected and methodology of impact assessment
- Data requirements; assumptions; limitations
- Initial data quality requirements
- Type of critical review, if any
- •Type and format of the report required for the study

CASE STUDY: What is the function of a light bulb?

CASE STUDY: Is this comparison fair?

VS

CASE STUDY: What is the function of a light bulb?

Provide light at a certain intensity and for a certain time

CASE STUDY: Which unit would allows to make a fair comparison?

VS

Provide 500 to 900 lumens for 10 000 hours

CASE STUDY: What should be compared

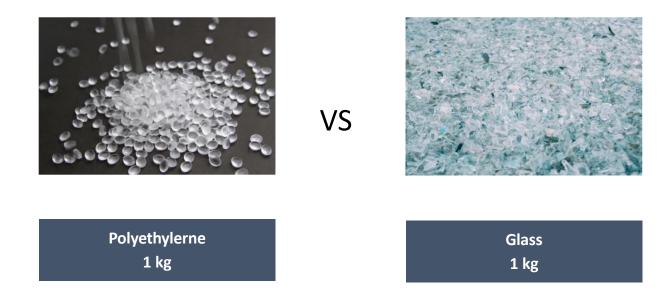
CASE STUDY: Could you provide a functional unit for this comparison?

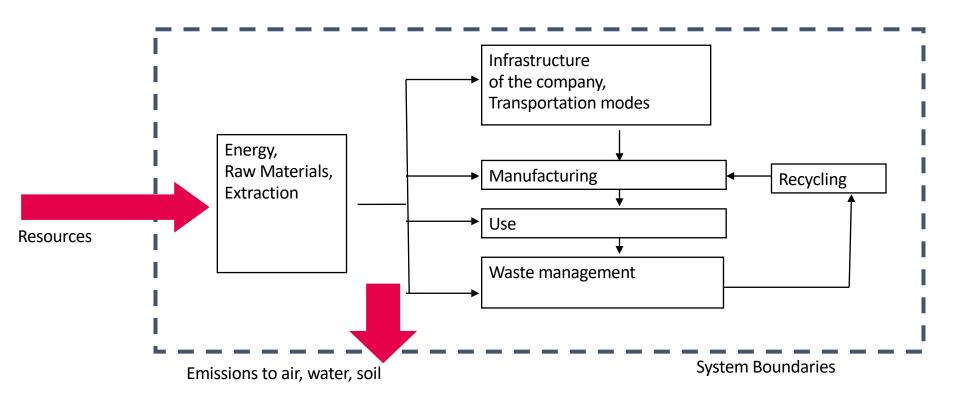
Source: Alessandro Fontana – SUPSI

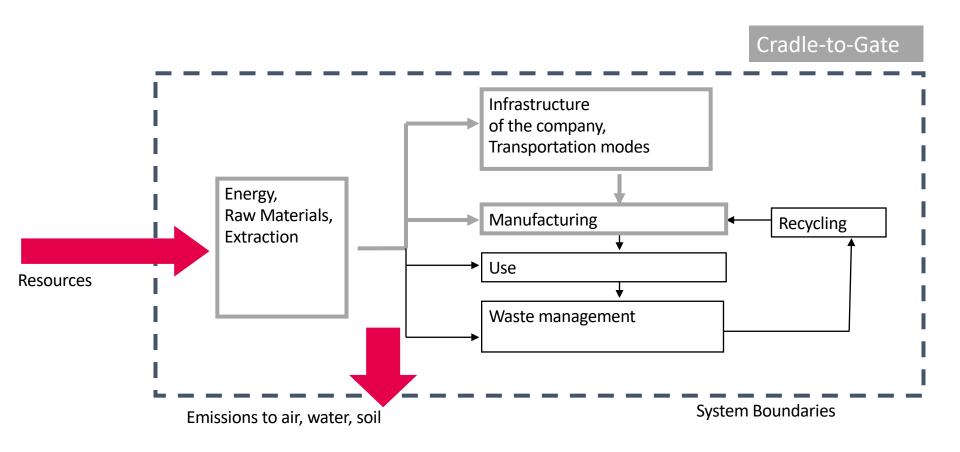
Little exercice (yay!)

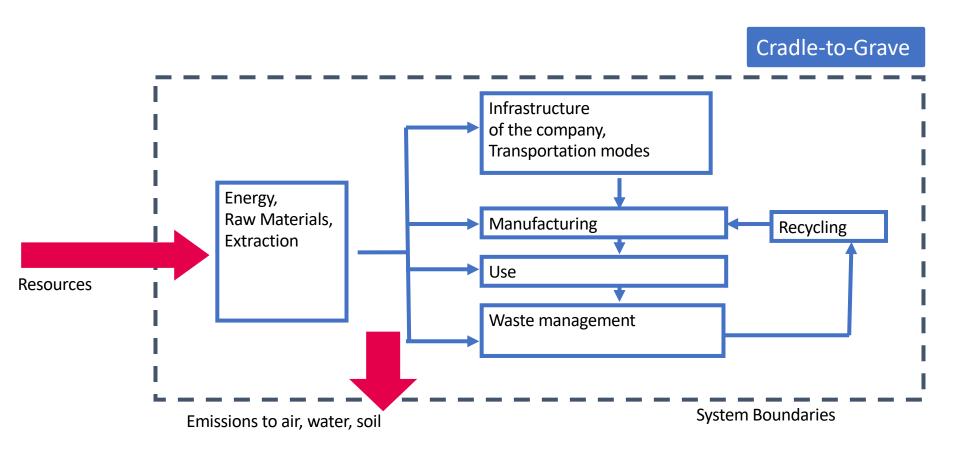
Product or system	Main function	Functional unit	Reference flow (what you buy)	Key parameters linking UF with reference flow
Hand dryer	Dry hands	1 pair of hand dried	1.5 serviettes et 1/50000 support pour serviette papier Ou 1800 W pendant 30s et 1/50000 sèchemains électrique	Number of towels Drying power

CASE STUDY: Is this comparison fair?


VS




Iphone 12 1000h of phone calls


Nokia 3310 1000h of phone calls

CASE STUDY: What about this comparison?

Cradle-to-Cradle: Regenerative design, turning waste into product (=no more waste)

Gate-to-Gate: Gate-to-gate is a partial LCA looking at only one value-added process in the entire production chain

03

LIFE CYCLE INVENTORY

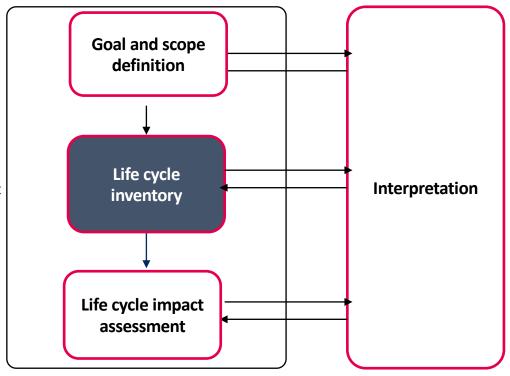
THE LCA FRAMEWORK YOU NEED TO KNOW

ISO NORMS 14 040 + 14 044 (2006) FOR LCA

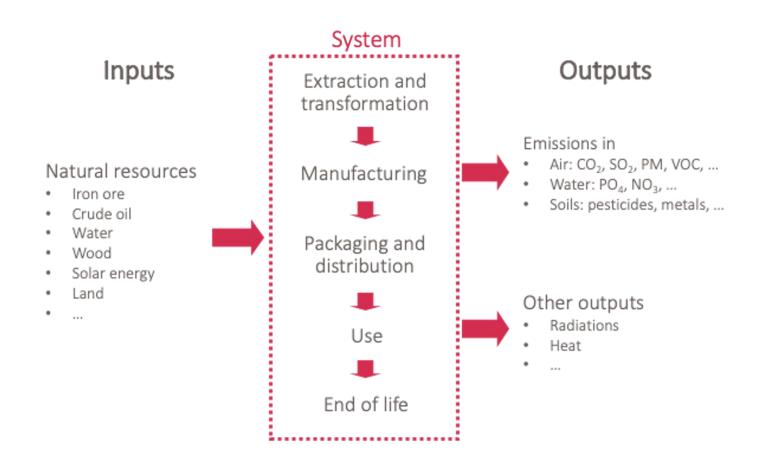
Goal and scope

The functional unit
The system boundaries

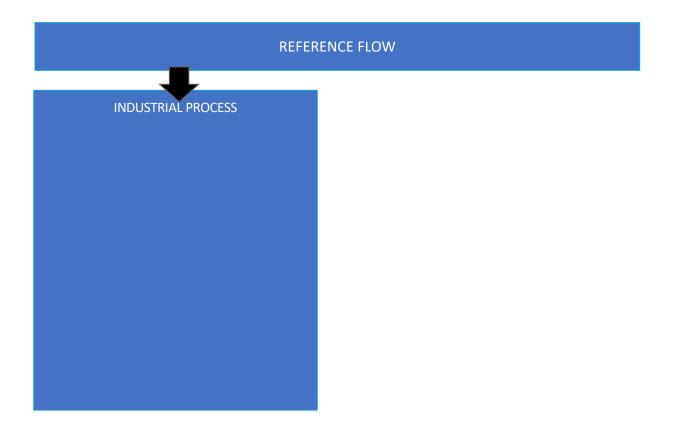
Inventory analysis


Tools and software Inventory data and databases

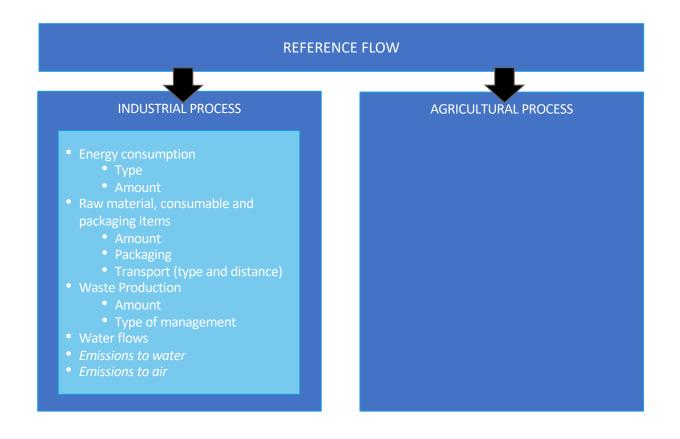
Impact assessment

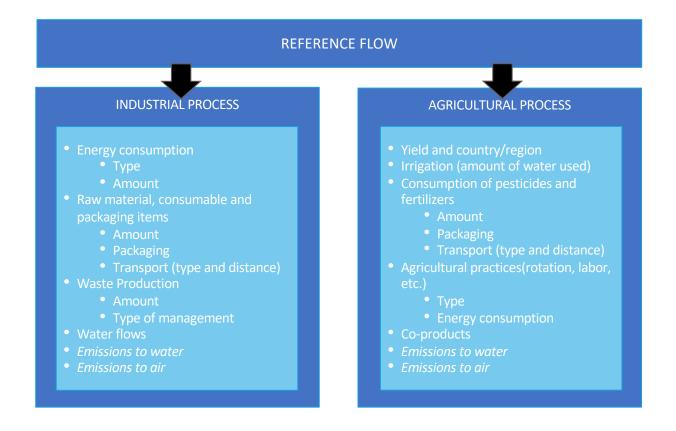

The synthetic nature of impact assessment Avoiding tradeoffs (e.g., single indicator)

Interpretation


Numbers are not enough

LIFE CYCLE INVENTORY


REFERENCE FLOW


REFERENCE FLOW

INDUSTRIAL PROCESS

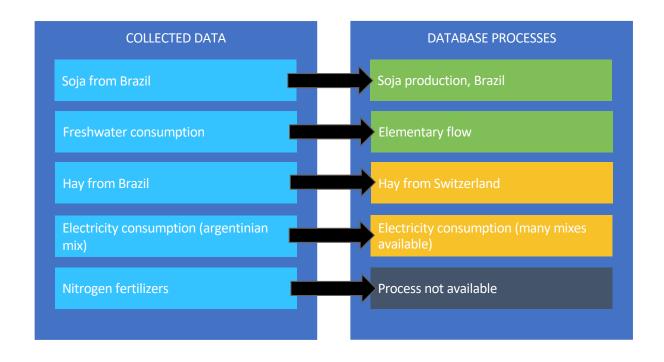
- Energy consumption
 - Type
 - Amoun
- Raw material, consumable and packaging items
 - Amount
 - Packaging
 - Transport (type and distance
- Waste Production
 - Amount
 - Type of management
- Water flows
- Emissions to water
- Emissions to air

COLLECTING THE DATA

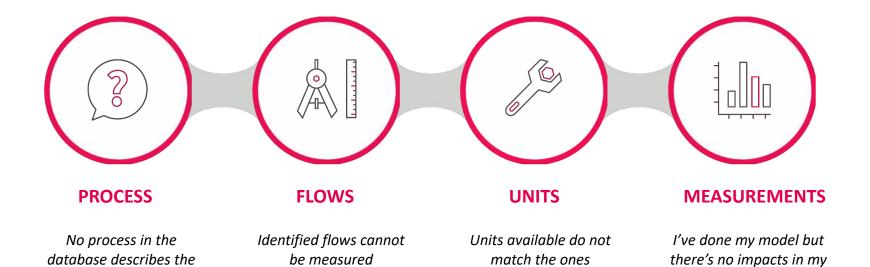
EVALUATE DIFFERENT FLOWS

PRIMARY DATA

Comes come specific measurements. rimary data Data from measurements and operational technical specifications. The main primary data are:


- Energy and water consumption
- Purchases (raw materials, packaging items)
- Origin of materials purchased and associated transport

SECONDARY DATA


Data from recognized and public sources (e.g. waste management data, generic data)

Data from evaluation models (e.g. emissions to air from combustion, emissions to water from the use of fertilizers)

IDENTIFY AVAILABLE PROCESSES IN OUR DATABASES

measured flow

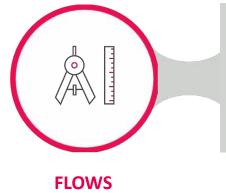
available in our DB

results

and are enriched each year with new processes. A significant part of LCA practitioner job is to create new datasets

PROCESS

No process in the database describes the measured flow



Adapt existing processes

A recurring problem in LCA, the databases used are in continuous development

Use data from scientific literature

SOLUTION TO THE PROBLEM ORIGIN OF THE PROBLEM

Identified flows cannot be measured

In many cases, it is difficult to obtain specific data for a process. This is typical when the relevant steps take place outside the operational control of the company.

Use of data from literature secondary data

Expert hypothesis and sensitivity analysis

Flow exclusion cut-off

SOLUTION TO THE PROBLEM

ORIGIN OF THE PROBLEM

UNITS

Units available do not match the ones available in our DB Operationally measured data may not be aligned with data presented in the database.

Identification of parameters enabling the conversion from a flow to another. They can be linked by:

- Energy LHV (PCI in French)
- Density
- Weight
- Surface / Volume

SOLUTION TO THE PROBLEM

ORIGIN OF THE PROBLEM

When analyzing results of an LCA, one may be surprised by the absence of certain flows perceived as important in the results. This may be due to several reasons related to the approach used.

MEASUREMENTS

I've done my model but there's no impacts in my results Datasets' nomenclature problem Flow is not characterised in the method

No existing method evaluate the flow

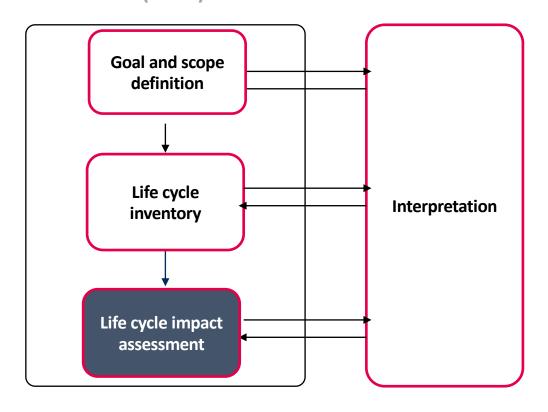
SOLUTION TO THE PROBLEM

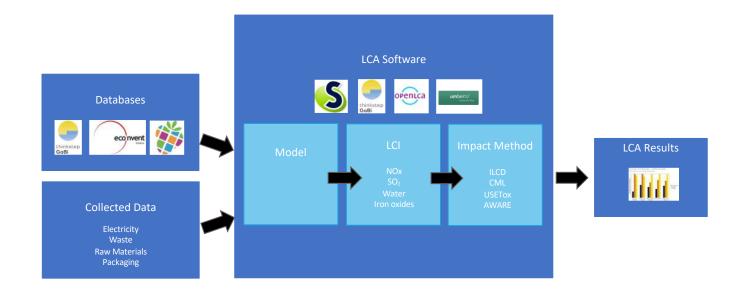
ORIGIN OF THE PROBLEM

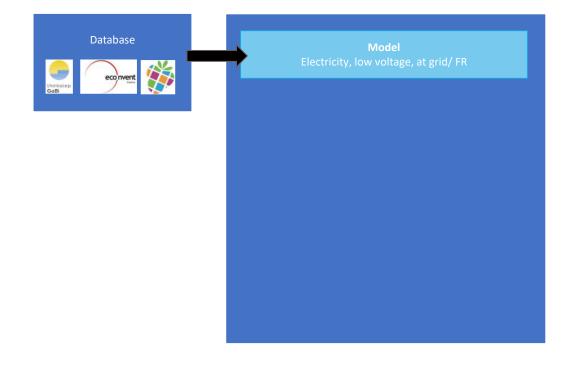
04

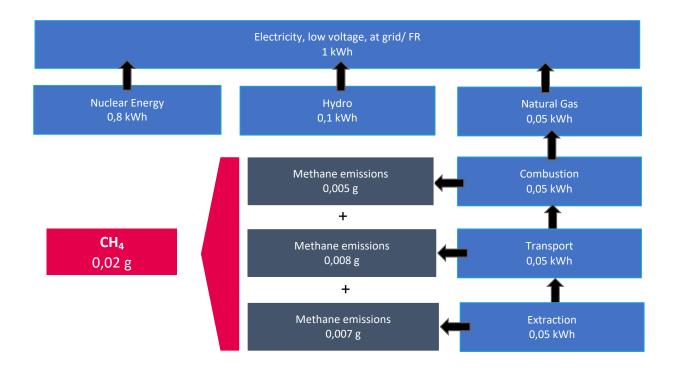
LIFE CYCLE IMPACT ASSESSMENT

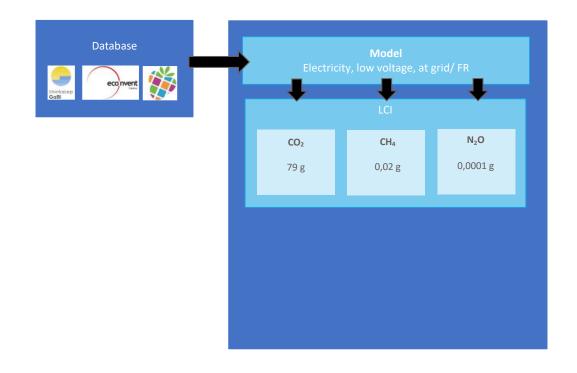
+ KEY METHODOLOGICAL CHALLENGES IN LCA

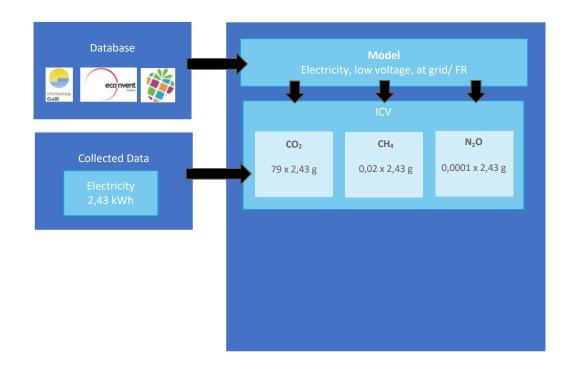


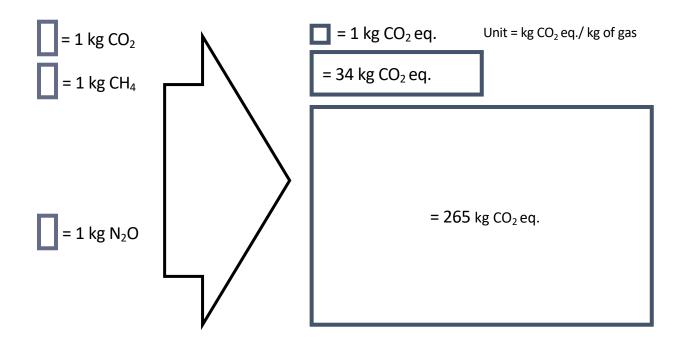

THE LCA FRAMEWORK YOU NEED TO KNOW

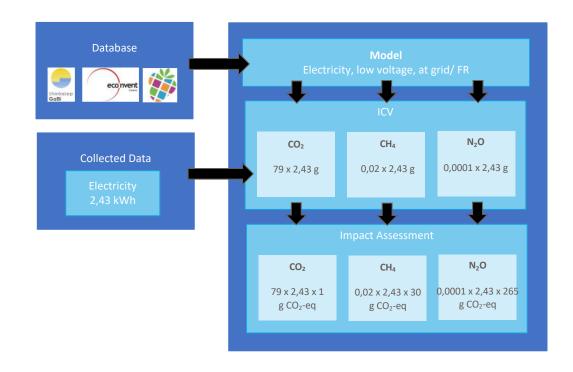

ISO NORMS 14 040 + 14 044 (2006) FOR LCA

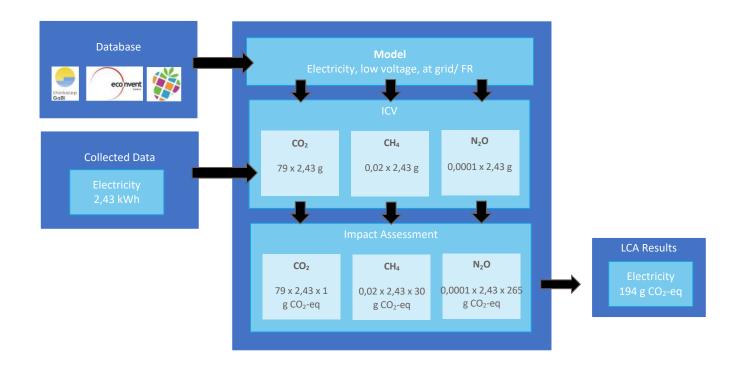

LCA MODELLING TOOLS AND DATABASES

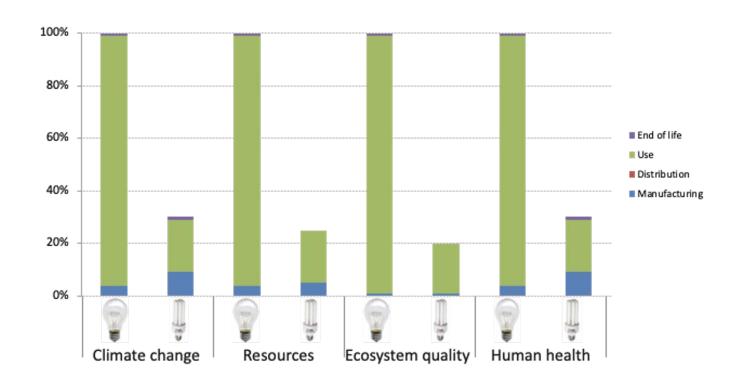

CHOOSING EMISSION FACTORS


COMPUTING THE LCI


COMPUTING THE LCI

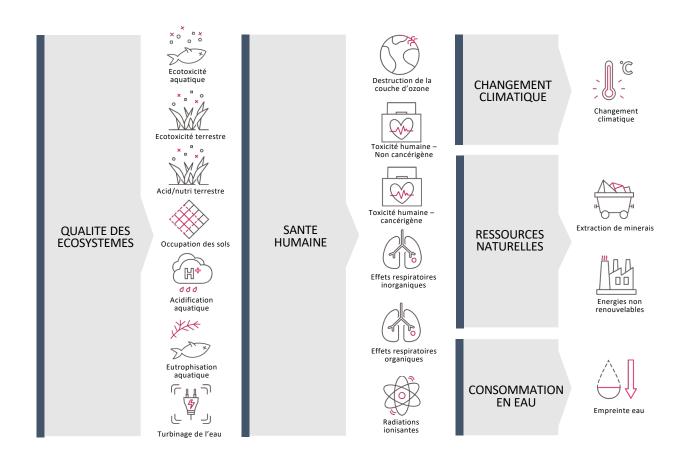

USING THE INPUT DATA


CALCULATING THE LCIA

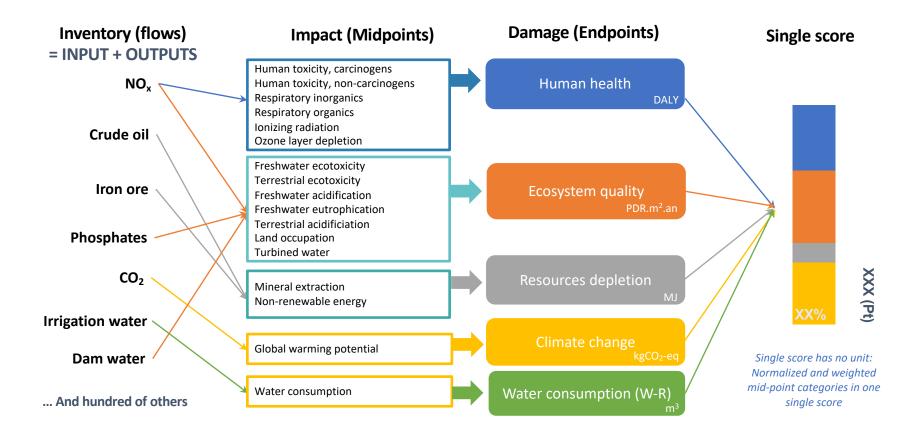

CALCULATING THE LCIA

CALCULATING THE LCIA

IMPACT ASSESSMENT

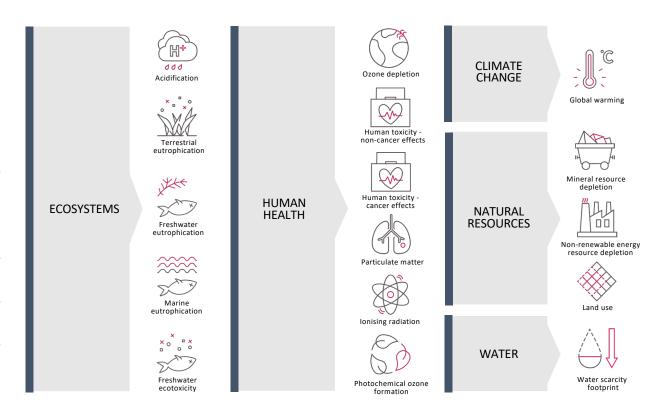


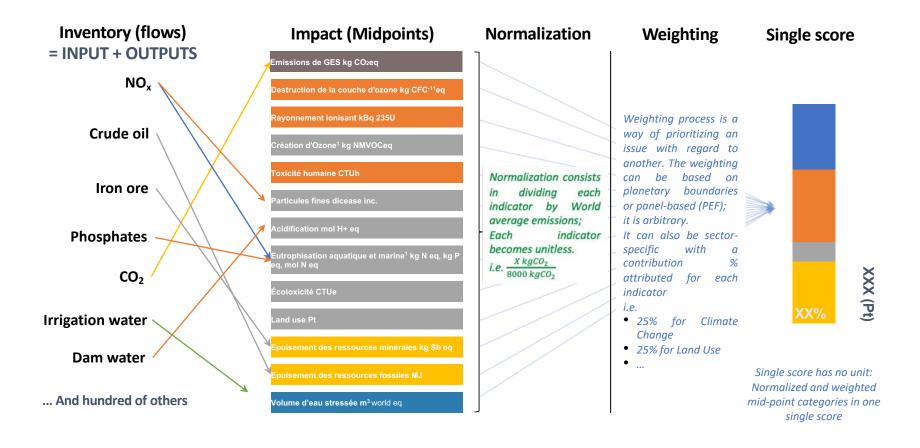
2. UNCERTAINTY OF IMPACT METHODS


		Class*	
Impact category or LCI indicator	Unit	I: recommended and satisfactory	Minimal
		II: recommended, but in need of some improvements	significance level
		III: recommended, but to be applied with caution	
Climate change	kg CO₂ eq	I	Factor 2
Ozone depletion	kg CFC-11 eq	I I	Factor 2
Human toxicity – non-cancer effects	CTUh	III (interim)	Factor 10
Human toxicity – cancer effects	CTUh	III (interim)	Factor 5
Particulate matter	Deaths/kg PM2.5emitted	I	+-20%
Ionising radiation	kg U235 eq	II	Factor 2
Photochemical ozone formation	kg NMVOC eq	II	Factor 2
Acidification	mol H+ eq	П	Factor 2
Terrestrial eutrophication	mol N eq	II	+-33%
Freshwater eutrophication	kg P eq	II	Factor 2
Marine eutrophication	kg N eq	II	+-33%
Freshwater ecotoxicity	CTUe	III (interim)	Factor 5
Mineral & metal resource depletion	kg Sb eq	III	Factor 5
Non-renewable energy resource depletion	MJ	III	Factor 2
Land use	points	Ш	+-33%
Water scarcity footprint	m3 water deprived eq	Ш	Factor 2

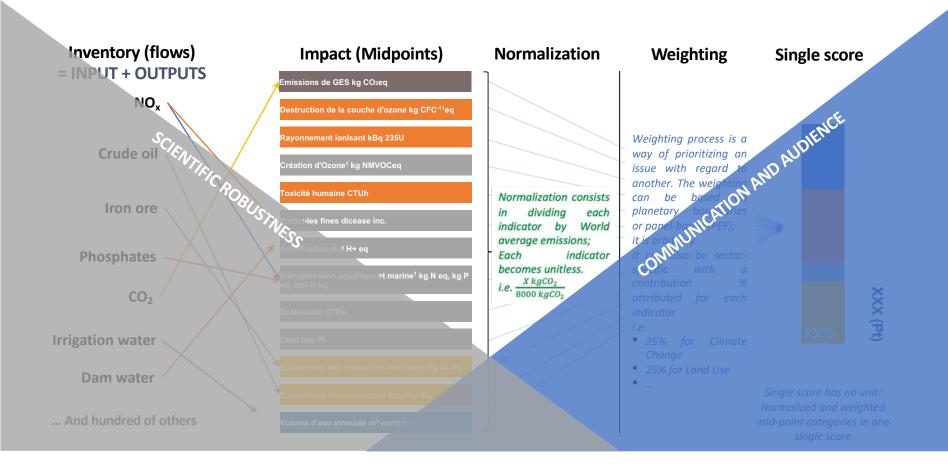
IMPACT 2002 + (IN FRENCH)

Méthodologie Quantis mondialement reconnue


IMPACT ASSESSMENT A LARGE PANEL OF INDICATORS (IMPACT 2002+)

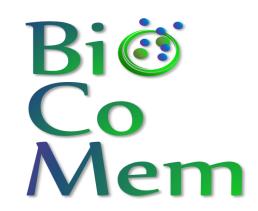

IMPACT ASSESSMENT, ENVIRONMENTAL FOOTPRINT (EF) METHOD

Choice of LCIA method depends on


- Type of indicator desired; mid-point, end-point, single score...
- Single score helps to see if a big contributor is missing
- Maturity of the client
- Subject of the project; characterization factors of an indicator.
- EF3.0 LCIA method is recommended if the sector of interest is covered by the methodology

IMPACT ASSESSMENT A LARGE PANEL OF INDICATORS (EF 3.0)

IMPACT ASSESSMENT A LARGE PANEL OF INDICATORS (EF 3.0)



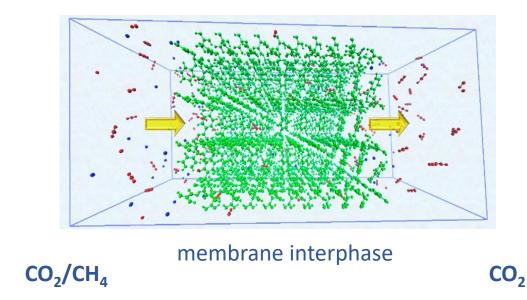
Bio-based copolymers for membrane end products for gas separations

Thank you for your attention

Bio-based copolymers for membrane end products for gas separations

This project has received funding from the Bio Based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme, under grant agreement No 887075.

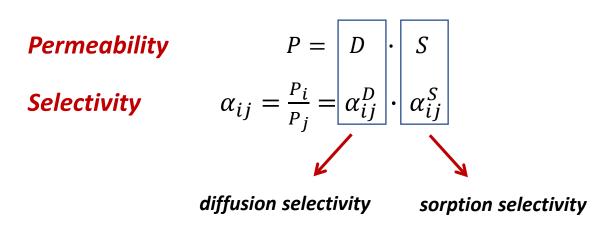
The JU receives support from the European Union's Horizon 2020 research and innovation program and the Bio Based Industries Consortium


Membrane Process Design

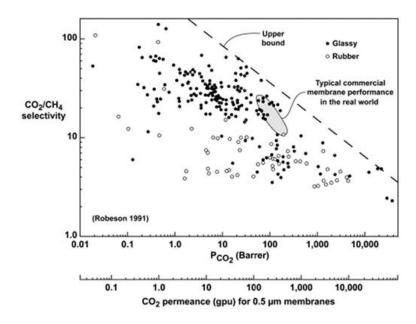
Contacts: Fausto Gallucci f.gallucci@tue.nl

Membrane Gas Separation

Representation of a selective separation process

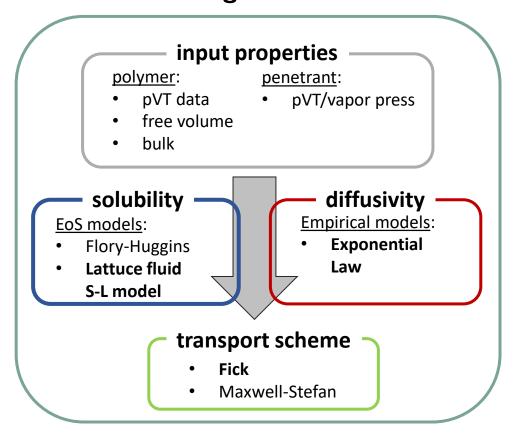

- A membrane allows selective permeation of one or more of the components present in a mixture.
- Feed enters on one side of the membrane, some of it permeates through the membrane and so the stream leaving from the other side of the membrane is called permeate and the remaining unseparated mixture on the feed side is called retentate.
- The goal of a model for a membrane unit for gas separation is to predict the flow rate and composition of retentate and permeate streams, for a given feed stream.

Gas Separation in dense polymeric membranes


Solution-Diffusion mechanism

Permeability can be deconvoluted into the product of a kinetic factor and a thermodynamic factor, namely diffusion and sorption coefficients

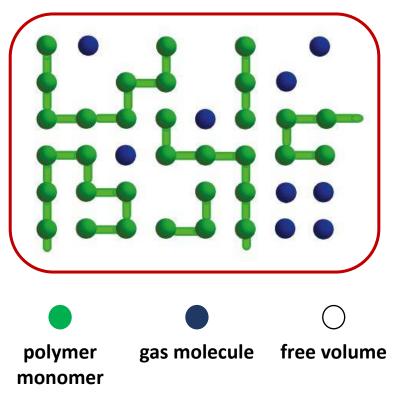
CO₂/CH₄ Robeson Plot



- ➤ Robeson Plot reports the performance of different polymeric membranes for a certain gas separation
- This graph actually tells you that you cannot exceed a certain value of selectivity at a fixed permeability and viceversa, which represents a tradeoff for the separation performance.

Gas Separation in dense polymeric membranes

Working Flow Chart



Model for multicomponent Solubility

Lattice Fluid (Sanchez-Lacombe) Equation of State

2-D Lattice representation

In the **Sanchez Lacombe** framework:

- polymer macromolecules are considered as a set of beads on a lattice
- polymer chains are mixed randomly with penetrant molecules
- ➤ The SL EoS considers also configurations with empty sites in the lattice, so that *free volume exists* in the polymer–penetrant mixture

thus *volume changes* upon mixing penetrant and polymer molecules are allowed.

Model for multicomponent Solubility

Lattice Fluid (Sanchez-Lacombe) Equation of State

Phase equilibrium condition between the gas phase and the polymer membrane phase:

$$\mu^{(S)}(T,p,\Omega) = \mu^{(G)}(T,p,y)$$

- $\triangleright \mu^{(G)}$ and $\mu^{(S)}$ are the chemical potential values of the fluid species i in the gaseous and in the solid phase, respectively.
- The **gas phase** is characterized by **T**, **p**, and **composition y**
- ightharpoonup The **polymer/penetrants phase** is characterized by **T**, **p**, and **composition** Ω
- \succ The model contains energetic <u>binary</u> interaction parameter k_{ij}
- The chemical potential of the gas phase $(\mu^G(T, p, y))$ can be calculated either with the same EoS or with more convenient ones depending on the operational conditions (T, p) taken into account

Model for multicomponent Diffusivity

Binary mixture case

$$D_{ip} = D_{ip}^{\infty} \exp(\gamma_i \phi)$$

Ternary mixture case

$$D_{ip} = D_{ip}^{\infty} \exp[\gamma_i (\phi_i + \xi_{ij} \phi_j)]$$

- \triangleright D_{ip}^{∞} penetrant diffusivity in the limit of infinite dilution (i.e. at moderate pressures, in which the polymer structure is unaltered)
- $\triangleright \gamma_i$ empirical plasticization constant
- $\triangleright \phi_i$ the volume fraction of component *i*
- \succ ξ_{ij} is a measure of the influence of j on the diffusion coefficient of component i in the polymer

Observations:

- ξ can vary between 0 and 1, where:
 - i. $\xi_{ij} = 0$ means the diffusion coefficient of component i in the polymer is not affected by component j
 - ii. $\xi_{ij} = 1$ the diffusion coefficient of penetrants in the polymer is affected in the same way.

To correctly predict the permeability, the fit of binary permeation data (gas₁-gas₂-polymer) is needed to evaluate the empirical value of parameters such as the plasticization constant.

Model for multicomponent Diffusivity

The simplest description of gas diffusion through a dense membrane is based on the Fick's Law, assuming the diffusion coefficient *D* as constant.

$$J_i = -D \frac{\partial C}{\partial x}$$

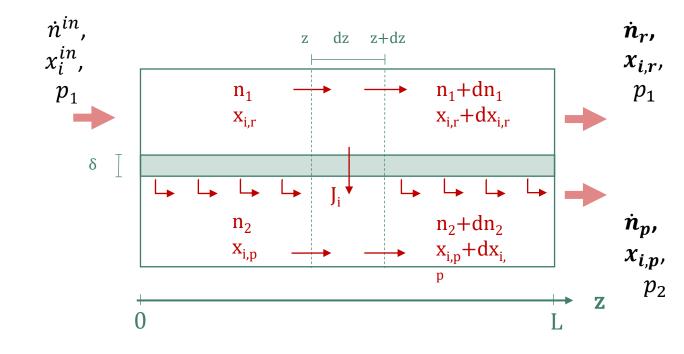
$$J_i = D_i \frac{C_{i,0} - C_{i,z}}{z}$$

where:

- D_i is the diffusion coefficient of the component i,
- $C_{i,0}$ concentration of component i at the retentate side
- $C_{i,z}$ concentration of component i at the permeate side

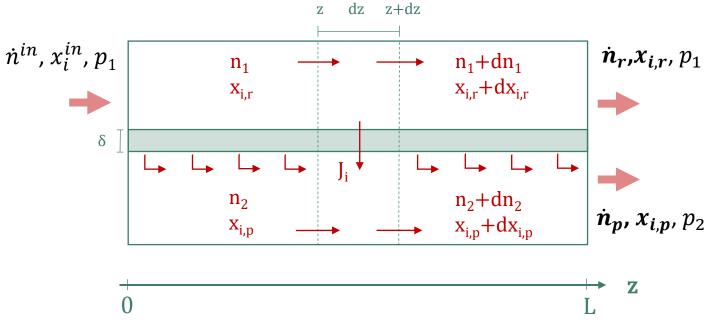
Then, considering that the permeability is the product of solubility and diffusivity we obtain:

$$J_i = \frac{P_i}{Z}(p'x_i - p''y_i)$$


This way, permeability P_i can be integrated into a mass transfer scheme for multicomponent permeation which is here below outlined.

Membrane Gas Separation

- A membrane allows selective permeation of one or more of the components present in a mixture.
- Feed enters on one side of the membrane, some of it permeates through the membrane and so the stream leaving from the other side of the membrane is called permeate and the remaining unseparated mixture on the feed side is called retentate.
- The goal of the model for membrane unit for gas separation is to predict the flow rate and composition of retentate and permeate streams, for a given feed stream.



ODE System Equations

$$\begin{cases} \frac{dn_1}{dz} = -\sum_{i=1}^{n} J_i(p_1, p_2, x_{i,r}, x_{i,p}) \cdot SN_f \\ \frac{dx_{i,r}}{dz} = \frac{x_i \sum_{i=1}^{n} J_i(p_1, p_2, x_{i,r}, x_{i,p}) - J_i(p_1, p_2, x_{i,r}, x_{i,p})}{n_1} \cdot SN_f \\ \frac{dn_2}{dz} = +\sum_{i=1}^{n} J_i(p_1, p_2, x_{i,r}, x_{i,p}) \cdot SN_f \\ \frac{dx_{i,p}}{dz} = \frac{J_i(p_1, p_2, x_{i,r}, x_{i,p}) - y_i \sum_{i=1}^{n} J_i(p_1, p_2, x_{i,r}, x_{i,p})}{n_2} \cdot SN_f \end{cases}$$

where:

- \dot{n}^{in} feed entering the unit
- $oldsymbol{\dot{n}}_{r/p}$ retentate/permeate leaving the unit
- $x_{i,r/p}$ upstream/downstream molar fraction of component i
- J_i local transmembrane molar flux for species i
- p_1 upstream pressure
- p_2 downstream pressure
- S geometrical factor (e.g. πD hollow fibers)
- N_f number of fibers

Initial conditions (z=0):

- $n_1 = \dot{n}^{in}$
- $x_i = x_i^{in}$
- $n_2 = 0$

ODE System Equations

Model description

The system includes $2 \cdot n + 2$ coupled differential equations (where n represents the number of species in the feed gas mixture).

The feed conditions are assumed to be given: n_f , $x_{i,f}$, p_f , as well as the geometrical features of the membrane providing for the boundary conditions for the differential equations and the interval of integration.a

 \triangleright Finite material balance between z=0 and z=L

$$n_f = n_r + n_p$$

$$n_f \cdot x_{i,f} = n_r \cdot x_{i,r} + n_p \cdot x_{i,p}, \quad \forall i = 1, ..., N_c$$

> Differential material balance, retentate side

$$dq = -JSdz$$
$$d(qx_{i,r}) = -J_iSdz$$

> Constitutive Flux Equations

$$J_i = -\frac{P_i}{\delta} \cdot (p_1 \cdot x_{i,r} - p_2 \cdot x_{i,p}), \qquad \forall i = 1, \dots, N_c$$

Composition Equations

$$\sum_{i=1}^{N_c} x_{i,f} = \sum_{i=1}^{N_c} x_{i,r} = \sum_{i=1}^{N_c} x_{i,p} = \mathbf{1}$$

Dimensionless parameters

Dimensionless parameters are mainly used to lighten the computational effort as the model will be used for process design and optimization purposes.

Introducing:

•
$$\mathbf{r_p} = \frac{p_2}{p_1}$$

•
$$\overline{n}_1 = \frac{n_1}{n_f}$$

$$\bullet \quad \overline{A} = \frac{AP_1p_1}{\delta n_f}$$

•
$$\zeta = \frac{Sdz}{SL}$$

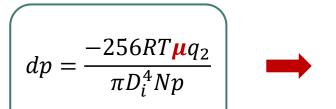
where:

$$\Pi_1 = \frac{P_1}{\delta}$$

$$A = SN_f L$$

$$A = SN_fL$$

$$\frac{1}{\frac{P_1}{\delta}} \cdot \frac{n_f}{n_f} \cdot \frac{1}{p_1} \cdot \frac{d(n_1)}{dA} = -\sum_{i}^{N_c} \frac{P_i}{\delta} \cdot \left(p_1 \cdot x_{i,r} - p_2 \cdot x_{i,p} \right) \cdot \frac{1}{p_1} \cdot \frac{\delta}{P_1}$$


1.
$$\frac{d\left(\frac{n_1}{n_f}\right)}{d\left(\frac{A\Pi_1p_1}{n_f}\right)} = \frac{d\bar{n}_1}{d\bar{A}} = \frac{d\bar{n}_1}{d\zeta \cdot \bar{A}}$$

2.
$$-\sum_{i}^{N_c} \frac{P_i}{\delta} \cdot \frac{\delta}{P_1} \cdot \left(\frac{p_1}{p_1} \cdot x_{i,r} - \frac{p_2}{p_1} \cdot x_{i,p} \right) = -\sum_{i}^{N_c} \gamma_i \cdot \left(x_{i,r} - r_p \cdot x_{i,p} \right)$$

$$\frac{d\overline{n}_1}{d\zeta} = -\sum_{i}^{N_c} \gamma_i \cdot (x_{i,r} - r_p \cdot x_{i,p}) \cdot \overline{A}$$

Permeate Pressure Loss - Viscosity calculations

Perry's Chemical

$$\mu_i = \frac{C_1 \cdot T^{C_2}}{1 + \frac{C_3}{T} + \frac{C_4}{T^2}}$$

Wilke (1950)

$$\mu_{mix} = \sum_{i=1}^{n} \frac{\mu_i}{1 + \frac{1}{x_i} \sum_{\substack{j=1 \ j \neq i}}^{n} x_j \phi_{ij}}$$

$$\phi_{ij} = \sum_{i=1}^{n} \frac{\mu_i}{1 + \frac{1}{x_i} \sum_{\substack{j=1 \ j \neq i}}^{n} x_j \phi_{ij}}$$

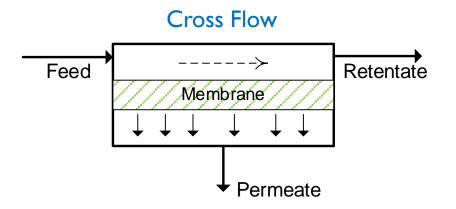
Components	CO_2	O_2	СО	H_2	CH_4	N_2	C_2H_6	$m{\mu} imes g/(cn)$ μ_{calc}	
	6,2	10,7				83,1		175	179,3
x_i (%)	10,6		29,8	3,9	0,3	55,4		171,3	174,3
	2,5	0,8	14,9	53,0	18,1	9,1	1,6	126,05	135,5

Steps of design of a membrane system

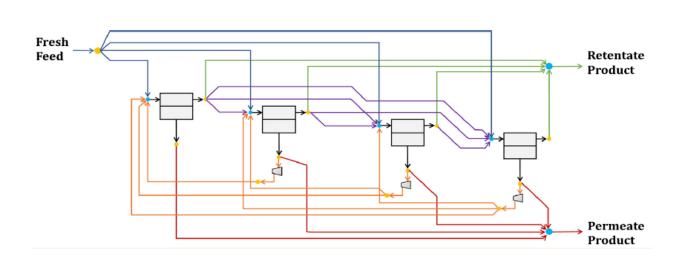
Process design is essential to provide an energy-efficient membrane technology for natural gas sweetening.

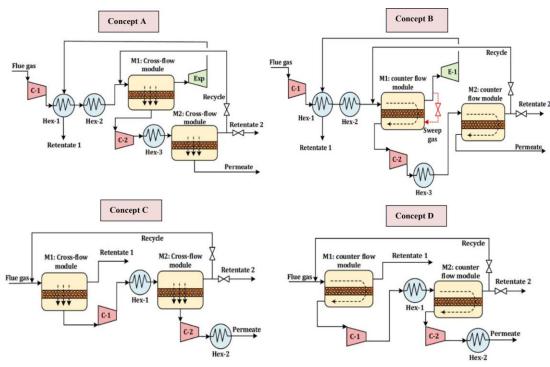
- Consider feed source and feed quality
- 2. Consider product flow and required product quality
- 3. Select the flow configuration
- 4. Select membrane element type
- 5. Select the design flux according to the feed source
- 6. Select number of stages
- 7. Select the staging ratio
- 8. Analyze and optimize the membrane system

Flow arrangements in membrane modules


- The performance of a membrane is influenced by the way in which the permeate and retentate flow in the membrane.
- Several flow arrangements, such as perfect mixing, co-current, counter-current, and cross flow are possible in the design of a membrane module.
- Parametric studies of these flow patterns have shown that given equal operating conditions, the counter-current flow pattern is most efficient (meaning less membrane area is needed), followed by the cross flow pattern.

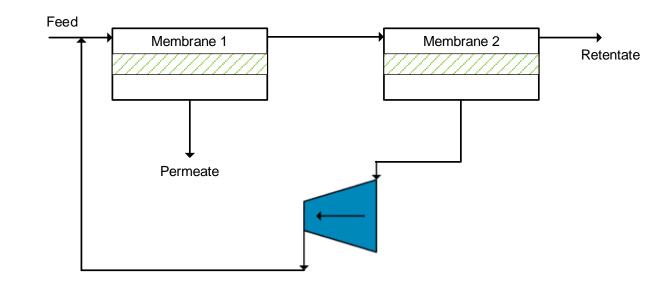
Flow arrangements in membrane modules





Multi-stage membrane module

- Single stage processes cannot provide both, high product gas purity and high recovery at the same time.
- ❖ To improve purity and recovery, membrane stages are cascaded with recycle.
- The selection of the best configuration is highly related to feed quality, separation objectives and market values.

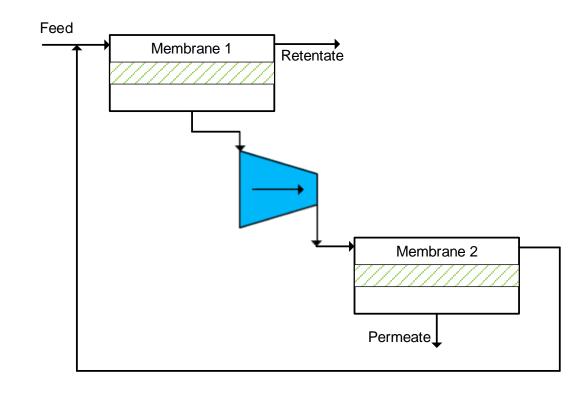

Two-stage cascade for purer <u>retentate</u>

The raw gas is compressed and fed to the first membrane stage.

The first stage performs a bulk separation of for example CO_2 and CH_4

The retentate of the first stage is fed to a second stage in which the final product purity is obtained.

The permeate of the second stage is recycled and mixed with the raw gas stream to enhance the CH_4 recovery.

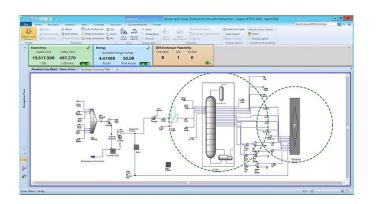

Two-stage cascade for purer <u>permeate</u>

In this configuration, the permeate stream of the first membrane unit, after passing through a compressor and a cooler, enters the second stage

In this design, the permeate stream of the second membrane unit is considered as the final product.

The product purity and recovery of this configuration are higher than those of the previous configuration.

The combination of similar membranes or/and different membranes in the two-stage process results in good separation performance as product purity reaches the desired values.



Process Simulation Tools

Process simulators have been proven to be successful in modeling, simulate, and optimize various industrial processes.

Aspen Plus Aspen Hysys	Can be used for batch and continuous processes for design, troubleshooting in regular operations, monitoring the plant performance through online, and real-time optimization.			
gPROMS	An advanced equation oriented process modeling software, which can be used to model, analyze, and optimize in an easy-to-use process flow-sheeting environment.			
PRO/II	A steady-state simulator which has an in-built membrane unit operation to simulate crossflow symmetric membranes for gas separations.			
ProMax	A multifaceted process simulation software which it is designed to optimize gas processing, refining, and chemical facilities.			
SuperPro Designer	A flowsheet driven simulator for batch, continuous as well as combination processes, that perform material and energy balances, equipment sizing, and costing.			
Aspen Custom Modeler	Provides the capability to create unique process and equipment simulation models by describing the equations which can be exported into Aspen Plus/Hysys.			

Process Simulation Tools

Process simulators contain:

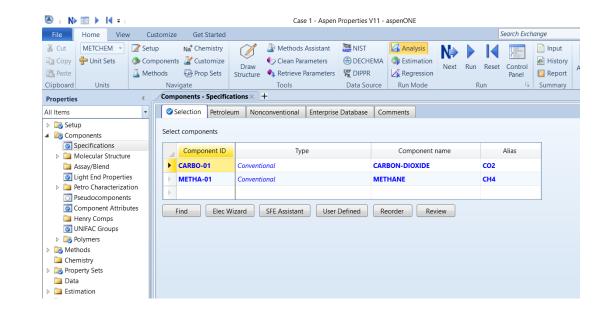
- I. mathematical models for many common process units (for example, reactor, distillation column, heat exchanger, pump and compressor)
- 2. different numerical methods for solving process models
- 3. property database for numerous chemicals
- 4. thermodynamic models for predicting properties of chemical mixtures.

To design chemical processes, relevant components and thermodynamic models from the database are chosen, and process units in the simulator are put together according to the process flow diagram.

The user needs to provide some design/operating conditions of each process unit as per its degrees of freedom.

Some process models like membrane separation are not available in Aspen Plus.

Aspen Custom Modeler (ACM)


- The model for membrane gas separation can be implemented and solved in ACM, which can be added to Aspen Plus.
- To implement the membrane model in ACM, all chemicals are defined from the component list in the Aspen Properties User Interface program.
- o Fixed variables or inputs (feed temperature, pressure, composition and membrane area) are defined, and the process parameters (for example, permeance) and variables are declared.
- o In ACM, all the model equations are solved simultaneously, and so degrees of freedom are important.
- The membrane model in ACM can now be used with other process models in ACM itself.

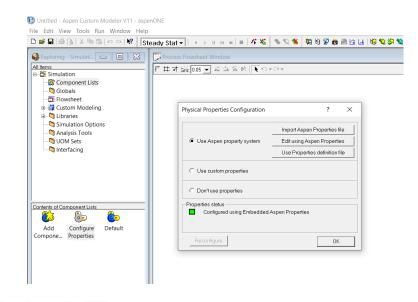
Implementation of Membrane model in ACM

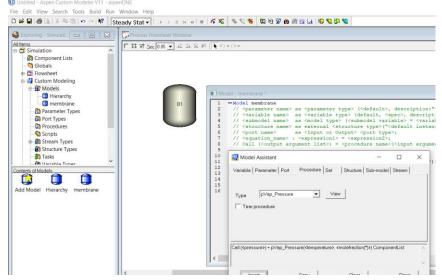
- Open Aspen Properties User Interface program
- Chemical Processes Chemicals with Metric Units Components Specifications Selection).
- Run the simulation (using F5 key)
- Save it as Aspen Properties Backup file.

Implementation of Membrane model in ACM

Open ACM file and click Configure Properties to open Physical Properties Configuration window, and import the Aspen Properties Backup file.

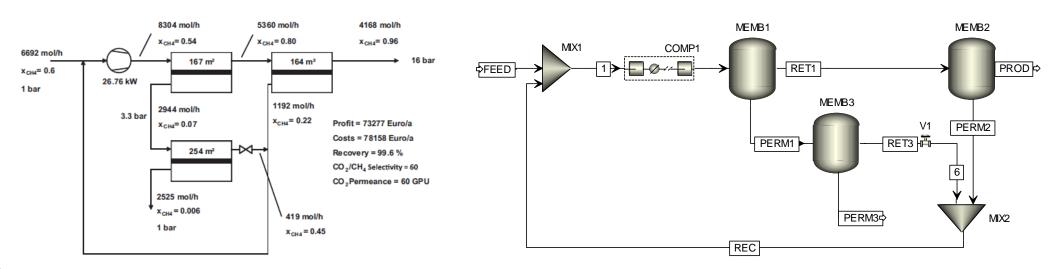
Click Default to select the components from the available components. Add the new model with a suitable name.


Use Model Assistant to get the syntax of different variables for ACM code.


The model form provides all variables in the membrane model, which can be seen using Ctrl+D.

This membrane model in ACM can now be used with other process models in ACM itself

To use the model in Aspen Plus, the membrane model in ACM has to be saved as a *.msi file using the export wizard.



Membrane design of biogas upgrading process

- ✓ The developed mass transfer model for the gas separation membrane process is coded by MATLAB.
- ✓ The second step is to integrate the model with Aspen Plus using ACM.
- ✓ The mass and energy balances are written in the model created in the ACM.
- ✓ The model has one port for feed stream and two ports as permeate and retentate streams.
- ✓ By entering the pressure, temperature, concentration, and flow rate of feed, the flux and concentration of components are calculated.
- ✓ Various configurations can be proposed for the membrane process.
- ✓ CO_2 will permeate faster through the membrane so that the permeate is enriched in $CO_{2,}$ and CH_4 is enriched on the retentate side.

Membrane design of biogas upgrading process

Commonly gas permeation processes include multiple membrane stages to achieve high gas purities and recoveries simultaneously.

By applying a structural optimization approach, the most profitable process configuration including stage numbers can be determined.

In general, feed gas conditions, product gas requirements and economic parameters such product gas pressure and energy costs considerably determine the optimal process configuration.

COMP1 S1

STAGE2

MEMB1 RET1-2

RET1-2

PROD S

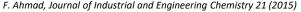
REC2

RET1-2

To find the best configuration of the multi-stage gas separation membrane process and to compare with the single-stage process, the cost analysis is performed, and various simulated cases are evaluated.

Economics

	☐ The optimization function for any chemical process consists mainly of capital (CAPEX) and plant operating (OPEX) expenses.
	☐ The operational cost is a sum of utilities, labor, maintenance, depreciation of equipment and eventual replacement costs.
	☐ In the case of membrane gas separation plant the maintenance and labor costs are very low comparable to the power bill. Therefore, these costs can either be ignored or simply added as a fraction of the capital cost.
	☐ Capital cost is mainly the installation cost of vacuum pumps, compressors, piping system and membrane modules.
	☐ The application of a compressor and vacuum pump leads to electrical energy consumption, which increases the energy penalty of the existing power plants.
	☐ The feasibility study of polymer membranes shows that the energy requirement for the compressors is the dominant cost factor in the recovery process.
٦	ΓU/e


Economics

To optimize the process, it is more appropriate to determine the economic optimum rather than the energetic optimum, since the membrane-based biogas upgrading process has to compete economically with well established gas separation techniques.

The GPC must be a minimum subject to the operating conditions, material and energy balances, and individual permeator mathematical model.

Economics parameters for gas processing cost
--

Total plant investment (TPI):	TPI = TFI + SC
Membrane module cost (MC)	\$5/ft ³
Installed compressor cost (CC)	$8650*(W_{cp}/\eta_{cp})^{0.82}$
Fixed cost (FC)	MC+CC
Base plant cost (BPC)	1.12*FC
Project contingency (PC)	0.20 * BPC
Total facilities investment (TFI)	BPC+PC
Start up cost (SC)	0.10*VOM
Annual variable operating and maintenance cost (VOM):	VOM = CMC + LTI + DL + LOC + MRC + UC
Contract & material maintenance cost (CMC)	0.05 *TFI
Local taxes and insurance (LTI)	0.015 *TFI
Direct labor cost (DL)	\$15/h
Labor overhead cost (LOC)	1.15*DL
Membrane replacement costs (MRC)	\$3/ft ² of membrane
Utility cost (UC)	\$0.07/kwh
Annual cost of CH_4 lost in permeate (CH_4LS):	$CH_4LS = NGLS * NHV * NWP$
Annual natural gas lost (NGLS)	$NGLS = 365*OSF*L_f*y_{P(CH_4)}*x_{f(CH_4)}$
Gas processing cost (GPC)	GPC = $(CRC + CH4LS + VOM)/[365 * OSF * L_f * (1 - SCE) * 1000$
Annual capital related cost (CRC)	0.2 * TPI
Membrane life (t)	4 years
Wellhead price of crude natural gas	\$2/MMBTU
Heating value of natural gas	1066.8 MMBTU/MMSCF
On stream factor (OSF)	96%
Compressor efficiency (η_{cp})	0.8
F. Ahmad. Journal of Industrial and Engineering Chemistry 21 (2015)	

References

- 1. S. Sharma et al. (2016) Mathematical modeling, simulation and optimization for process design. In Chemical Process Retrofitting and Revamping.
- 2. F. Ahmad et al. (2015) Hollow fiber membrane model for gas separation: Process simulation, experimental validation and module characteristics study, Journal of Industrial and Engineering Chemistry.
- 3. M. Samei et al. (2022) Separation of nitrogen from methane by multi-stage membrane processes: Modeling, simulation, and cost estimation, Journal of Natural Gas Science and Engineering.
- 4. M. Scholz et al. (2015) Structural optimization of membrane-based biogas upgrading process, Journal of Membrane Science.
- 5. R. Kancherla et al. (2021) Modeling and simulation for design and analysis of membrane-based separation processes, Computers & Chemical Engineering.

Bio-based copolymers for membrane end products for gas separations

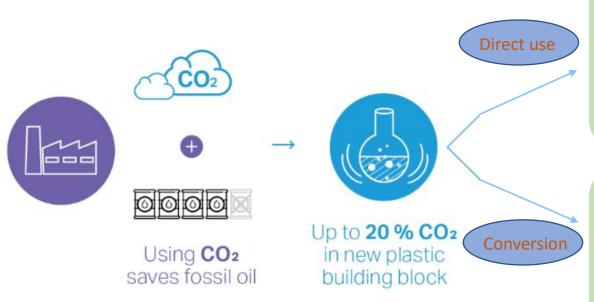
This project has received funding from the Bio Based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme, under grant agreement No 887075.

The JU receives support from the European Union's Horizon 2020 research and innovation program and the Bio Based Industries Consortium

Polymeric membrane preparation and scaleup

Amol Ichake and Katrien Bernaerts

Introduction and Literature Overview



Maastricht University

2 27/10/2022

CO₂ as a raw material

Yield boosting (Greenhouses, Algae, Urea/fertilizer)
Solvent (Enhanced oil recovery,

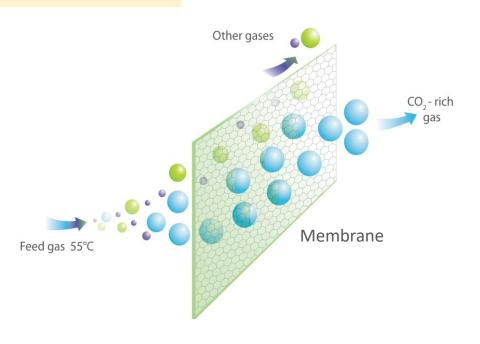
Decaffeination, Dry cleaning)
Heat transfer fluid (Refrigeration
Supercritical power system)

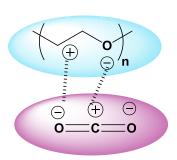
Fuels (Methane, Methanol,
Gasoline/ aviation fuel)
Chemicals (Chemical intermediate,
Polymers)

Building materials (Filling material, Cement, Concrete)

Carbon dioxide can partially replace fossil fuel in plastics production

https://www.covestro.com/en/sustainability/flagship-solutions/co2-as-a-raw-material



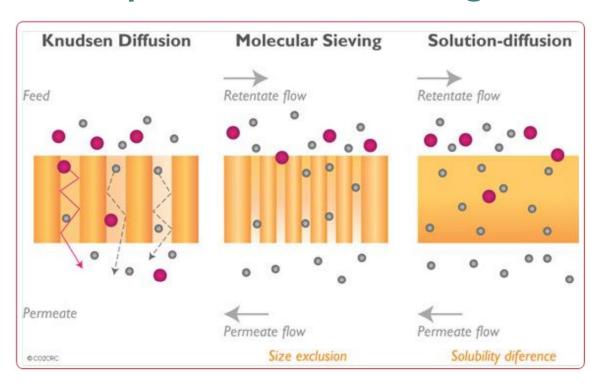

Gas separation membranes

- Permeability is the rate at which gaseous molecules permeate through membrane
- Selectivity is the ability of membrane to separate the gas molecule from their mixture

Inorganic, metallic and polymeric membranes have been reported for gas separations

Polymeric membranes

quadrupole-quadrupole interaction



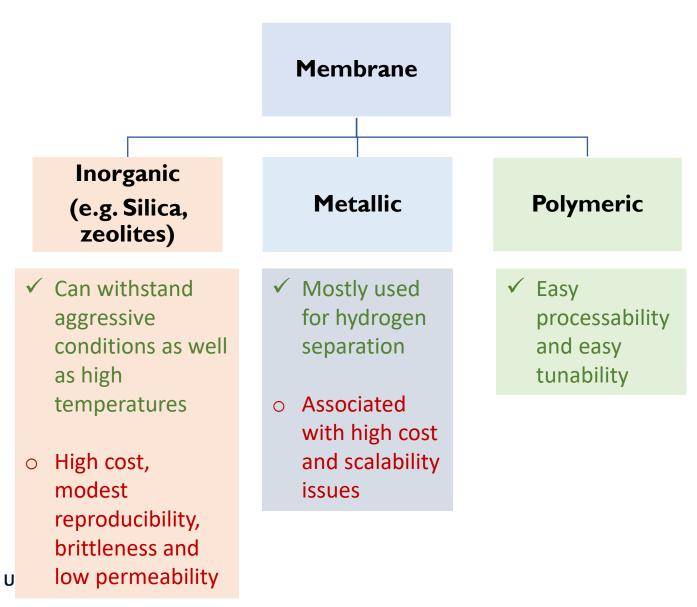
Maastricht University

27/10/2022

Gas transport mechanism through membrane

Knudsen diffusion is based on the molecular mass of gas and inversely proportional to the square root of the molecular mass of diffusing species. This separation is followed by macroporous and mesoporous membranes.

Molecular sieving mechanism depends on the size of the penetrant molecules. Generally, small size molecules readily permeate through the membrane while larger molecules do not permeate.


Solution-diffusion mechanism consists of three main steps: (i) sorption of the gases at upstream side, (ii) diffusion of gas across the membrane and (iii) desorption at the downstream side.

The transport of gas molecules through dense, nanoporous membranes is based on solution-diffusion mechanism.

27/10/2022

Membrane materials for gas separation applications

Maastricht U

Membrane materials for gas separation applications

- The design of a membrane material for a gas separation application is based on specific physical and chemical properties.
- Robust, thermally and mechanically stable materials are required to be applied in a membrane gas separation process.
- The properties of membranes depend upon the material, membrane structure, thickness and membrane configuration (e.g., flat, hollow fiber).

Commercially available polymers for gas separation applications

Various polymeric materials -Cellulose acetate, polyethersulfone, polyamide, polyimide, cross-linked poly(2,6 dimethylphenylene oxide)

Membrane properties for industrial applications-

- High permeability and selectivity over other gases
- Thermal and chemical robustness
- Resistance to plasticization and aging
- Cost-effectiveness and
- Manufactured into different membrane forms such as flat sheet or hollow fibers with low cost.

Maastricht University

Factors affecting gas separation performance

Physical Properties of Polymer

- I. Chain packing density
- II. Chain and subgroup mobility
- III. Polarity
- IV. Crosslinking

Properties of Gas

- I. Condensability of gas molecules
- II. Size and shape of gas molecules

Effects of Operating Parameters

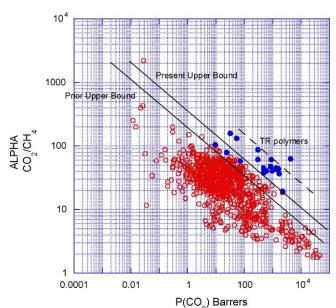
- I. Temperature
- II. Pressure

Effects of Membrane Preparation Parameters

- Membrane fabrication method
- II. Solvent used for casting
- III. Casting temperature

Challenges in polymeric membrane materials for gas separation applications

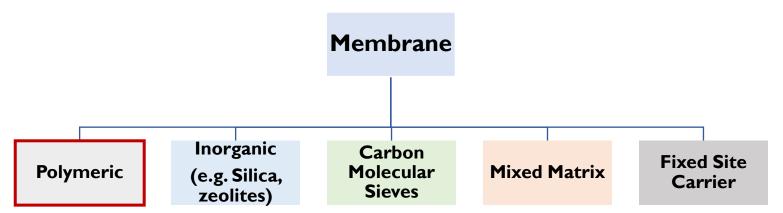
Plasticization


When the membrane is exposed to highly soluble gases that produce significant swelling in the polymer matrix. Due to this, polymer chain mobility and free volume increases which results into increased permeability and decreased selectivity.

Physical aging

Generally, glassy polymer chains pack loosely, creating excess free volume in the polymer matrix. The polymer chains gradually get closer with time to fill this excess free volume which ultimately results in the reduction in the free volume. Due to this, a decrease in permeability is generally accompanied by an increase in selectivity. This decay in membrane permeability is due to the relaxation of the non-equilibrium free volume and subsequently

Permeability/selectivity trade-off (Robeson upper bound)


Polymeric materials exhibit high permeability and low selectivity or vice versa as recognized by Robeson.

re-ordering of polymer chains

Membrane materials for gas separation applications

- ✓ Easy processability and easy tunability
- ✓ Low production cost
- Poor thermal and mechanical properties

Maastricht University

П 27/10/2022

Bi® **Membranes** Polymeric Poly-ethylene oxide (PEO) based membranes

Advantages

- Especially for CO₂ capture
- PEO-based polymers show a considerable CO_2 solubility, and the CO_2 selectivity mainly stems from the solubility selectivity.

Disadvantages

- Polar ether groups tend to form strong hydrogen bonding, which induces compact chain packing.
- A high degree of crystallinity in pure PEO or PEO-based materials

Various approaches to overcome these limitations

- ☐ Block copolymerization with other hard segments
- ☐ Blending with low molecular weight PEG and PEG-derivatives
- Crosslinking to form highly branched PEO polymer network.

Maastricht University

Chemical Structure and properties of PEBA

The general method for the two-step preparation –

- A first step of synthesis of the polyamide blocks then
- A second step of condensation of the polyamide and polyether blocks

- Polyamide (PA)
- Semi-crystalline segments
- Hard PA segments provide mechanical stability

- Polyether (PE)
- Amorphous rubbery blocks
- Soft PE blocks,
- Owing to their high chain mobility, are gas permeable

13

PEBA offers a balanced combination of mechanical strength, breathability, Maastr flexibility, chemical resistance, and ease of processing

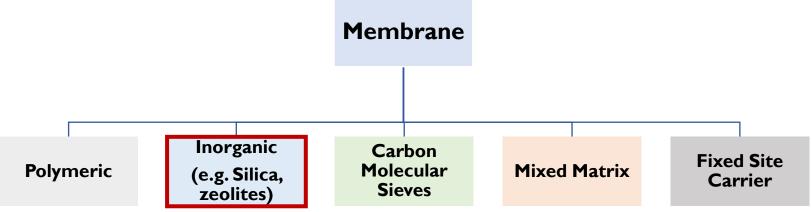
27/10/2022

Transport properties of selected PEO-based polymers

Strategy	Material	p(CO ₂)/atm	T/ºC	P(CO ₂)/Barrer	a(CO ₂ /N ₂)	a(CO ₂ /CH ₄)	a(CO ₂ /H ₂)
Copolymer	PEO-b-PA6	10	35	120	51.4		9.8
	PEO-b-PBT	0.3	30	150	51.5	16.8	10.3
	PEO-g-POEM	1	35	147	47		
	PEO-ran-PPO-T6T6T	4	35	470	43	13	10
	GPA1000-g-PEG-azide	2	45	1840	36		8.3
	PEO-b-PBT on PDMS	5	30	1815*	50		
	PEO-b-PS	1	70	20400*	27.7		
Blending	PEBAX®1074/PEG1500	5	60	528	34.6	7.4	10.6
	PEBAX® MH1657/PEGDME500	0.3	30	650			14.9
	PEBAX® MH1657/PEG-AE	0.3	30	335			12.9
	PEBAX® MH1657/PEG-DVE	0.3	30	570			12.9
	PEBAX® MH1657/PEG-AME	0.3	30	620			14.5
	PEO-PPO-T6T6T/PDMS-PEG	4	35	896	36	10.9	10.6
	PEBAX® 1657/PEGDME500	0.17	57	940*	30		
	PEBAX® 2533/PEG-b-PPFPA	3.5	35	940*	17		
Crosslinking	PEGDA/PEGMEA	11	10	300		23	
	PEGDA/PEGMEA	4	35	570	41		
	PEGDA/TRIS-A	15	35	716	19.9		7.7
	PEA/TMC	0.2	25	360*	67.2		
	DGBAmE/TMC	0.71	22	1310*	33		

 $p(CO_2) = CO_2$ partial pressure; $P(CO_2) = CO_2$ permeability; a=ideal CO_2 /gas selectivity;

^{*}Permeance measured in thin0film-composite membrane, GPU



Polyether block amide (PEBA) based membranes for CO₂ separation

Membrane	Gas mixture	Membrane Feature	Process performance	Main remarks
Commercially	Pure gases	Membrane	Permeability (Barrer):	The permeability of CO ₂ in
available	$(H_2, N_2, CH_4,$	Thickness = $60-100$	$CO_2 = 73-151$	Pebax®/PEG membrane (50 wt.% of
Pebax®	CO ₂)	mm	Permeance (GPU): CO ₂ <2.5.	PEG) is twofold regarding to the
MH1657 and its			Selectivity:	pristine Pebax® and an enhancement
blends with low			$CO_2/N_2 = 43-47$	of CO ₂ /H ₂ selectivity of ~11 is
molecular			$CO_2/CH_4 = 15.1-15.9$	produced due to the presence of EO
weight PEG			$CO_2/H_2 = 9.1-10.8$	units that increases CO ₂ permeability.
Hollow fiber	Pure gases:	Membrane	Dense PEBA membranes:	CO ₂ permeability tends to increase
PEBA/PSf	CO ₂ ; N ₂	thickness = 55 mm	Permeability (Barrer):	with an increase in gas pressure due to
composite		Layer (PEBA)	$CO_2 = 200-550$	plasticization of the membrane caused
membranes and		Thickness < 5 mm	$N_2 = 8-36$	by the relatively high solubility of
dense PEBA			Selectivity:	CO2 in the membrane. But the
membranes			$CO_2/N_2 = 16-40$	plasticization and swelling of the
			Composite membranes:	membrane are less significant at
			Permeance (GPU):	higher temperatures.
			$CO_2 = 61$	The selectivity of the composite
			Selectivity: $CO_2/N_2 = 30$	membrane is very close to the intrinsic
				selectivity of PEBA dense membrane.

Membrane materials for gas separation applications

- ✓ Can withstand aggressive conditions as well as high temperatures
- High cost, modest reproducibility, brittleness and low permeability

Maastricht University

27/10/2022

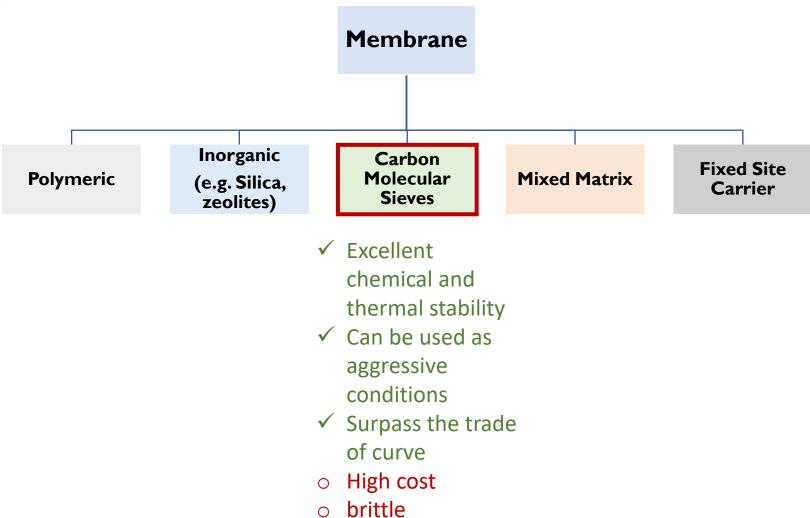
Membranes Inorganic membranes

Advantages

- Based on different materials like metal (alumina, cobalt, copper, iron, nickel, niobium, palladium, platinum, tantalum and vanadium), zeolites, carbon, and ceramic
- Generally, these membranes show higher gas separation performances combined with substantial chemical and thermal stability.

Disadvantages

- Materials have poor mechanical properties and are difficult to process.
- Brittle and expensive -their conversion into high surface area modules is rather difficult


Organic polymers	Inorganic materials		
Polysulfone, polyethersulfone	Carbon molecular sieves		
Cellulose acetate	Nanoporous carbon		
Polyimide, polyetherimide	Zeolites		
Polycarbonate (brominated)	Ultramicroporous amorphous silica		
Polyphenylene oxide	Palladium alloys		
Polymethylpentene	Mixed conducting perovskites		
Polydimethylsiloxane	Metal organic frameworks		
Polyvinyltrimethylsilane	-		

27/10/2022

17

Membrane materials for gas separation applications

Maastricht University

Membranes Carbon Molecular Sieve

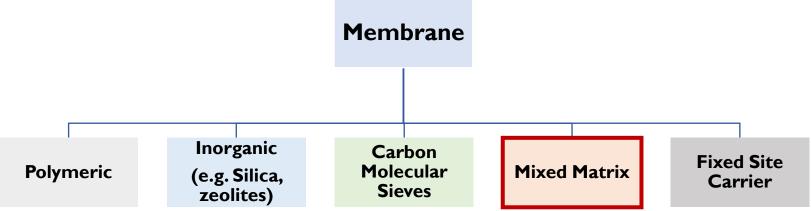
- High-performance gas separation membrane
- Separation mechanism-The gas molecules are separated by the size sieving effect

Advantages

- Excellent chemical stability
- Surpass the trade-off curves
- Can be used under aggressive condition
- Porous solid membrane with extreme rigidity and microporosity

Disadvantages

- Brittle
- High cost



Performance of asymmetric membranes for natural gas purification

Membrane	Feed gas CO ₂ /CH ₄	Feed pressure (bar)	CO ₂ permeance (GPU)	CO ₂ /CH ₄ selectivity
6FDA/BPDA-DAM CMS HF	10/90 (vol%)	3.40	30	73
Matrimid 5218 CMS HF	10/90 (vol%)	3.40	12	69
6FDA/BPDA (1:1)-DAM CMS HF	50/50 (vol%) and 500ppm C ₇ HC	124.13	50	~60
ULT CMS-6F0.5 HF	50/50 (mol%)	6.90	2546	24.10
6FDA:BPDA-DAM CMS HF	Pure gas	0.34	273	32

Membrane materials for gas separation applications

- ✓ Acceptable mechanical properties and cost-effective processability
- ✓ high selectivity,
 high permeability
- complex interaction
- Critical membrane morphology

Maastricht University

Membranes Mixed Matrix Membranes

- Consist of an organic polymer combined with inorganic (or sometimes organic) particles
- The dispersed phase may be zeolites, carbon molecular sieves (CMS), carbon nanotubes (CNT) or other nano-size particles.
- Metal organic frameworks (MOFs) are a newer class of crystalline and porous materials and are now used to overcome the limitations of inorganic membranes.

Advantages

- Combining the advantages of inorganic fillers with the acceptable mechanical properties and cost-effective processability of polymers were performed for CO₂/CH₄ gas separation.
- Potential for high selectivity, high permeability or both, compared to actual polymer and inorganic membranes.

Disadvantages

- The performance of MMM is not the sum of the intrinsic properties of each individual component
- The performance can be seriously affected by the complex interaction between all parameters.
- Transport properties of MMM are highly function of membrane morphology at the nanoscale, which is critical for the overall membrane properties

Maastricht University

Mixed matrix membranes composed of polymers and zeolites

Physical molecular properties of zeolites

Size and shape:

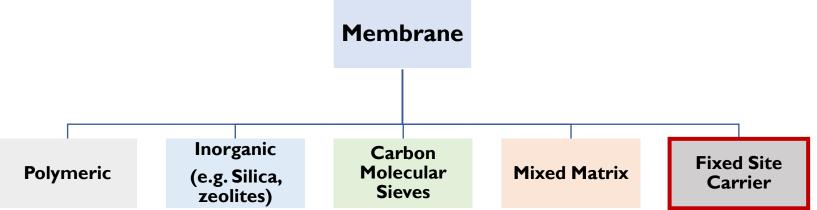
Gas molecules smaller than the pore size can adsorb on zeolites, whereas larger gas molecules cannot.

- Small pore size (0.30-0.45 nm). These zeolites have 8 membered-rings pore apertures with free diameters like zeolite NaA.
- Medium pore size (0.45-0.60 nm). These zeolites have 10 membered ring apertures, within free diameter like zeolite ZSM-5.
- Large pore size (0.6-0.8 nm). These zeolites have 12 membered-ring apertures or more within free diameter like zeolite faujasite (X, Y).

Molecular polarity:

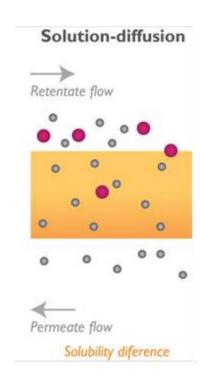
• Gas molecules with higher polarity can be better adsorbed than non-polar gas for the majority of zeolites under identical conditions.

Counter-ion:


• The type of cation controls the electric field inside the pores, basicity, and the available pore volume, which offers a convenient means for tuning adsorption properties.

Maastricht University

Membrane materials for gas separation applications



- ✓ Solution-diffusion
- √ Active transport mechanism

Membrane Fixed-site carrier membranes

- Exhibit "solution-diffusion" characteristics and also contain an active transport mechanism that increases the permeability and selectivity of the membrane material.
- The target species reversibly reacts with either a fixed or mobile carrier present in the membrane that then diffuses across the membrane driven by a concentration gradient in the complex rather than a gradient in the permeate.
- The main characteristic of these membranes is represented by the decrease of both CO₂ permeance and selectivity with increasing CO₂ feed partial pressure.

Membrane Fixed-site carrier membranes

- The CO₂ is absorbed and reacts to form bicarbonate, the form in which it permeates the membrane. Upon reaching the other side it back reacts to form CO₂ and is then released on the permeate side.
- eg. PVAm

Mechanism for a fixed carrier amine based facilitated transport membrane

Biocomem Results

Maastricht University

Objectives

Develop new bio-based CO₂ gas separation membranes using polyether block polyamide copolymer (PEBA)

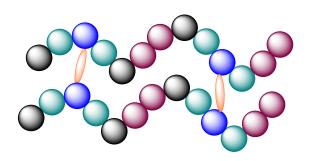
- High processability into monolithic hollow fiber membrane (i.e. solubility)
- Higher bio-based content
- High gas separation performance
- High chemical resistance

Block copolymers

Original prototypes

Prototype A


Commercial


Prototype B Photocrosslinkable

Partially bio-based

Prototype C

Fully bio-based

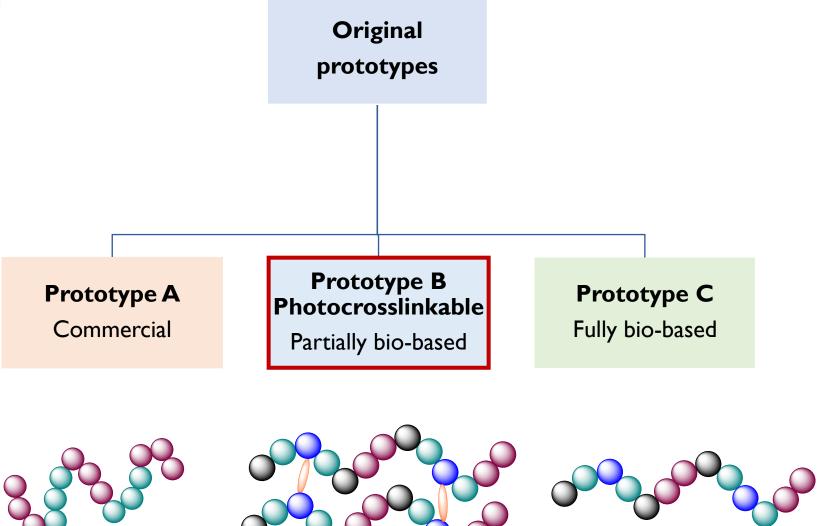
PEBA Prototype A

General structure of Poly(ether-b-amide)

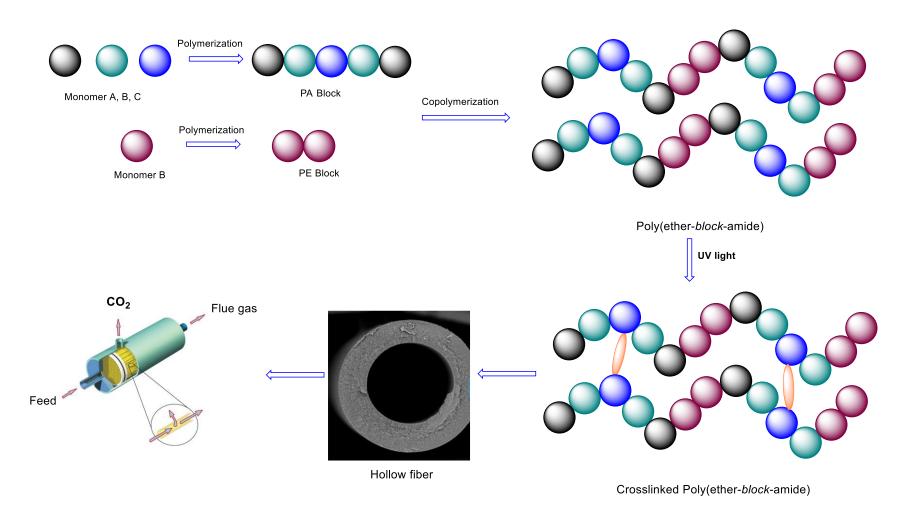
$$HO = C + N - C_{11}H_{22} + C - O + C_4H_8O + H$$

Chemical Structure of PEBAX

VARIETY OF TECHNOLOGIES



Maastricht University


Bio-based block copolymers

Maastricht University

New bio-based block copolymers Prototype B

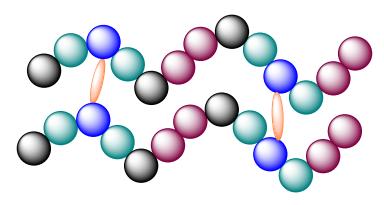
Maastricht University

Photocrosslinkable PEBA, Prototype B

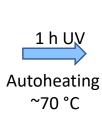
PEBA

Photocrosslinking

PEBA (prototype B, photocrosslinkable) with FDA monomer


Sample	PA prepolymer (M _n titration)	M _{n,GPC} [g / mol]	Đ	wt% PA/PEG ₁₅₀₀ (feed)	wt % PA/PEG ₁₅₀₀ (NMR)	T _g [°C]	T _m [°C]	$\Delta H_{m(PEG)}$ [J / g _{PEG}]	$\Delta H_{m(PA)}$ [J / g _{PA}]
PEBA ref		83 000	2.0	40/60		-20	13, 149	40	29
MS-2021- 035B5	PA (PrP/DA10) ₂₃₀₀	42 000	1.72	60/40	57/43	-62	15, 79	55	16
AI-20 (PEBA)	PA(PrP ₄₀ /DA10 ₅₀ /FDA ₁₀) ₂₁₀₀ one step	32 500	1.74	59/41	61/39	<-40	28, 74	34	11

Maastricht University


Photocrosslinkable PEBA, Prototype B

Crosslinked Poly(ether-block-amide)

Before crosslinking

After crosslinking Hot press

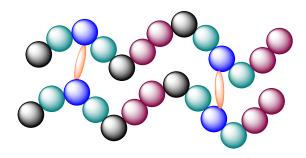
	PEBA	Sample Casted Film ^a	Curing time (min)	Sensitizer type	Gel content (%)	Gel content (%) After hot press
:h	AI-20	Transparent ~0.05	60	Michler's ketone	67 %	67 %
		mm				

Bio-based block copolymers

Original prototypes

Prototype A

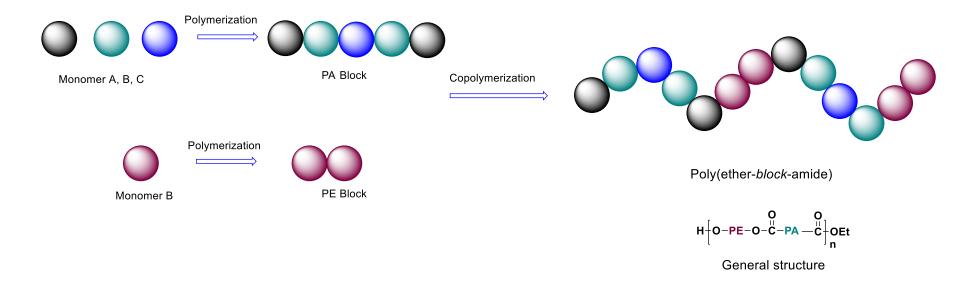
Commercial


Prototype B Photocrosslinkable

Partially bio-based

Prototype C

Fully bio-based



Maastricht University

Prototype C, Semicrystalline

Maastricht University

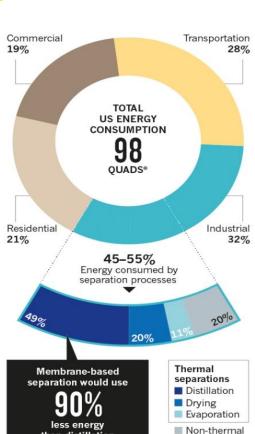
PEBA prototype C (Semicrystalline PEBA)

Sample	M _{n, end groups} for PA [g/mol]	M _{n,GPC} (g/mol) ^a	Đª	T _m [C]	ΔH _{m(PEG)} [J/g _{PEG}]	ΔH _{m(PA)} [J/g _{PA}]	Weight Ratio PA/PEG (feed)	Weight ratio PA/PEG (NMR)	η (Pa.s) at 220°C
Bio-PEBA	1050 PA11	83000	2.0	13; 149	40	29	40/60	-	20± 2.23
AI-38 (1 mol% cat)	1100 PA SAM100226	37300	2.16	27, 160	51	15	47/53	42/58	3± 0.17
AI-39 (2 mol% cat)	1100 PA SAM100226	39000	2.15	27, 160	48	12	47/53	41/59	6.77±0.35
AI-40 (3 mol% cat)	1100 PA SAM100226	41500	2.25	27, 160	47	15	47/53	42/58	15.3±0.23

Maastricht University

Thank you for your attention!

Polymeric membrane preparation and scaleup: Hollow Fiber membranes


Dr. Miren Etxeberria Benavides and Dr. Oana David

Membrane Technology and Process Intensification

MEMBRANE TECHNOLOGY

separations

than distillation

MEMBRANE SEPARATION

- No require a gas-liquid phase change
- Smaller separation units → small footprint
- Lack of mechanical complexity
- Operate under continuous, steady-state conditions

MEMBRANE TECHNOLOGY

 CO_2 capture

 CH_{4} purification

 H_2 purification

Olefin / paraffin separation

Flat sheet

Water separation

MEMBRANE CLASSIFICATION

MATERIAL

Polymeric Metallic

Ceramic

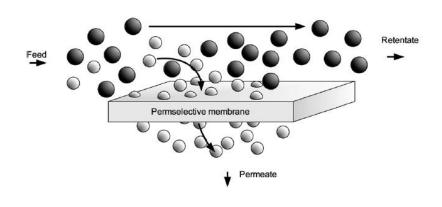
Carbon

Zeolite

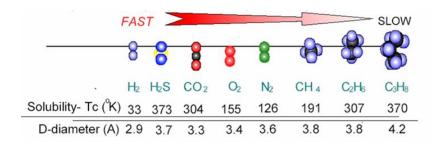
Composite

STRUCTURE

Integral asymmetric


Tubular

GEOMETRY


Hollow fiber

POLYMERIC MEMBRANES: SOLUTION-DIFFUSION MODEL

$$P_i = S_i \cdot D_i$$
 $\qquad \qquad \alpha_{ij} = \frac{P_i}{P_j} = \frac{S_i}{S_j} \cdot \frac{D_i}{D_j}$

Permeability (intrinsic property) $P_i = \frac{F_i \cdot l}{\Delta p_i \cdot A}$

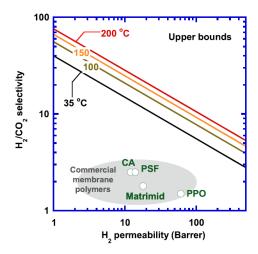
$$P_i = \frac{P_i \cdot t}{\Delta p_i \cdot A}$$

Permeance (membrane property) $\frac{P_i}{l} = \frac{F_i}{\Delta p_i \cdot A}$

$$\frac{P_i}{l} = \frac{F_i}{\Delta p_i \cdot I}$$

$$Barrer = 10^{-10} \frac{cm^3 STP \ cm}{s \cdot cm^2 \cdot cmH}$$

$$GPU = 10^{-6} \frac{cm^3 STP}{s \cdot cm^2 \cdot cmHg}$$



COMMERCIAL POLYMERIC MEMBRANES

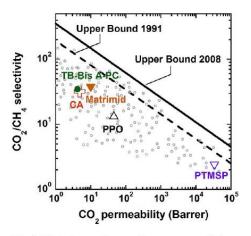


Table 1. Current Big Four Commercial Gas Separation Membrane Applications

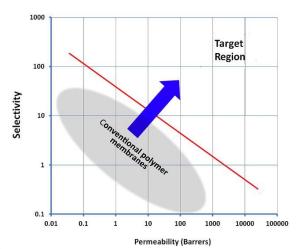

application	separation performed	selective layer polymer	approximate market size
hydrogen recovery	H_2/N_2 , H_2/CH_4 , H_2/CO	polysulfone, polyimides	\$200 million/year
N ₂ production	O_2/N_2	polyimides, polysulfone, polyphenylene oxide, substituted polycarbonates	\$800 million/year
natural gas treatment	CO ₂ /CH ₄ , H ₂ S/CH ₄ , He/CH ₄	cellulose acetates, polyimides	\$300 million/year
vapor recovery	C_3H_6/N_2 , C_2H_4/N_2 , C_2H_4/Ar , C_{3+}/CH_4 , CH_4/N_2 , gasoline/air	silicone rubber	\$100 million/year

FIGURE 1 Upper bounds of H_2/CO_2 separation at 35, 100, 150, and 200 °C calculated using the parameters shown in Table 1.[11-13] The separation properties of commercial membrane polymers were determined at 35 °C. 1 Barrer = 10^{-10} cm³ (STP) cm/(cm² s cmHe)

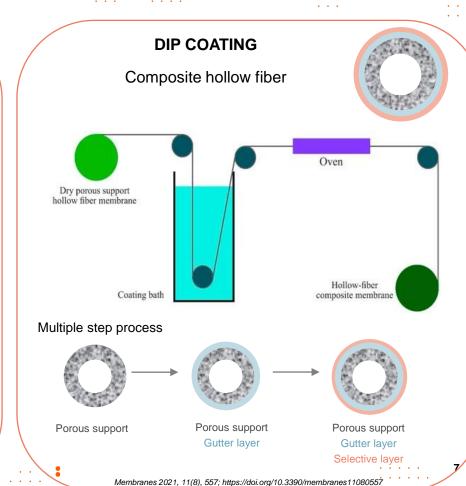
CO₂/CH₄ Robeson diagram for conventional glassy polymers.


HOLLOW FIBER MEMBRANES

25000 Packing density = 50 % Conventional gas separation polymeric HF Tube diameter (mm)

Advantages of HF

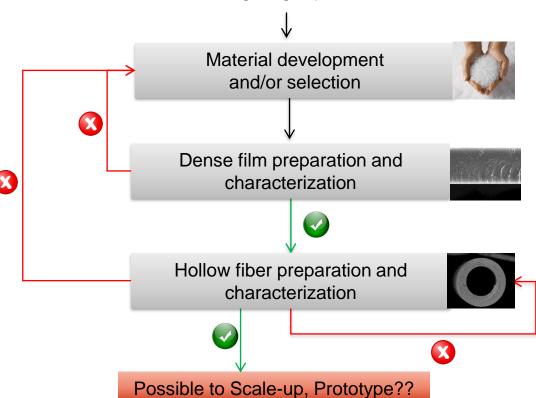
- High packing density (over 10000 m²/m³), 10 times higher than plate and frame modules
- Can handle very high transmembrane pressure differences (up to 70 bar)
- 5 to 20 times lower fabrication costs



HOLLOW FIBER PREPARATION METHODS

SPINNING Monolithic hollow fiber Spinning line solution 1 solution 2 Coagulation bath

Single step process: simultaneous formation of the porous support + dense selective layer



MEMBRANE DEVELOPMENT STRATEGY

Defining target performance

Intrinsic separation properties Permeability and selectivity

Separation properties
Permeance and selectivity

FUTURE OF MEMBRANES

Journal of Membrane Science 598 (2020) 117761

Contents lists available at ScienceDirect

Journal of Membrane Science

journal homepage: http://www.elsevier.com/locate/memsci

Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes

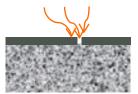
Suzana P. Nunes a , P. Zeynep Culfaz-Emecen b , Guy Z. Ramon c , Tymen Visser d , Geert Henk Koops e , Wanqin Jin f , Mathias Ulbricht g , *

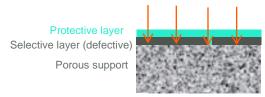
Table 3

Need for improved or novel membranes and membrane manufacturing technologies.

Membrane type	Challenges
Gas and vapor separation	Membranes with higher selectivity and sufficient permeance Zero defects
-	Higher thermal stability
	Stability in hydrocarbons and harsh vapors
	Improved ageing stability

Example 1: "zero defects"

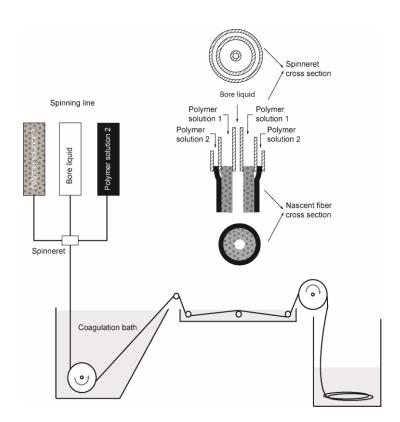

P84 polyimide


Table 2 Permeability and selectivity for P84 and Matrimid 5218 (25 °C)

	P _{He} (barrer)	P _{He} / P _{N2}	P _{CO₂} (barrer)	$P_{\mathrm{CO}_2}/P_{\mathrm{N}_2}$	PO ₂ (barrer)	P _{O2} / P _{N2}
P84	7.2	292	0.99	40.2	0.24	10.0
Matrimid 5218	22.5	122	8.7	37.8	1.32	7.2

J. N. Barsema, G. C. Kapantaidakis, N. F. A. van der Vegt, G. H. Koops, M. Wessling, J. Memb. Sci. 2003, 216, 195.

Article


Fabrication of Defect-Free P84® Polyimide Hollow Fiber for Gas Separation: Pathway to Formation of Optimized Structure

Development of defect-free as-spun ultrathin P84® asymmetric hollow fiber membranes that do not require a silicone rubber coating post-treatment step

Process parameters

Dope Composition

Dope Flow rate

Bore Composition

Bore Flow Rate

Spinning Temp

Coagulation Bath Temp

Air Gap height

Take-up rate

Room T

Humidity

Dope composition: key parameter

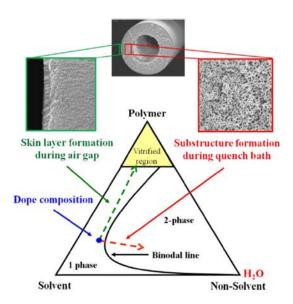


Figure. Gas separation asymmetric hollow fiber formation process represented in a ternary phase diagram

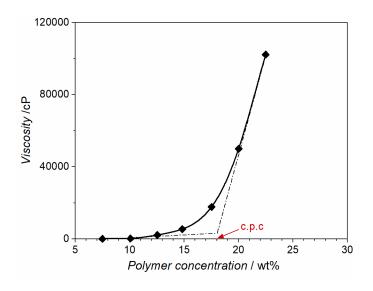
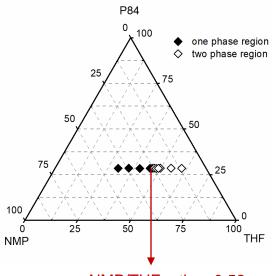
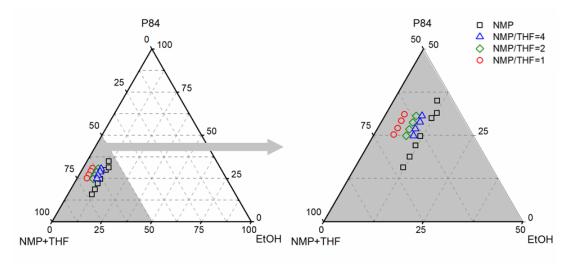


Figure 1.6. Typical viscosity versus polymer concentration curve and the determination of the critical polymer concentration, c.p.c.

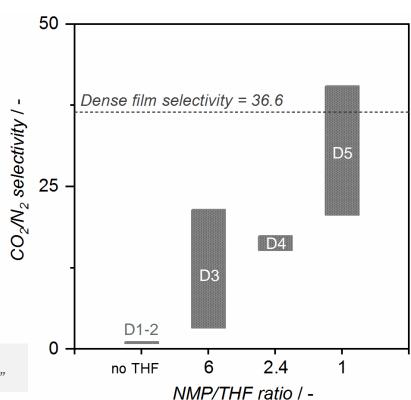



Dope composition

- N-methyl-2-pyrrolidone (NMP) Solvent

- Tetrahydrofuran (THF) Solvent

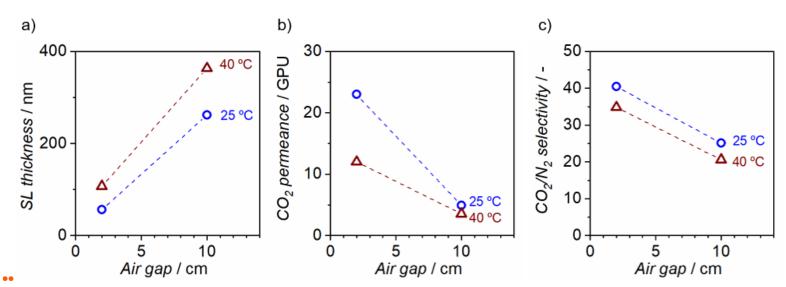
- Ethanol (EtOH) Non-solvent



Dope composition

Spinning session	D1	D2	D3	D4	D5
wt% P84®	28.5	28.5	28.5	28	28.5
wt% NMP	64.5	62.5	58.7	46.9	35.2
wt% THF	-	-	9.8	19.1	35.3
wt% EtOH	7	9	3	6	1*
NMP/THF ratio	-	-	6	2.4	1

"Asymmetric membranes are defined to be "defect-free" if the ideal selectivity is greater than 80% of the intrinsic selectivity of dense films"

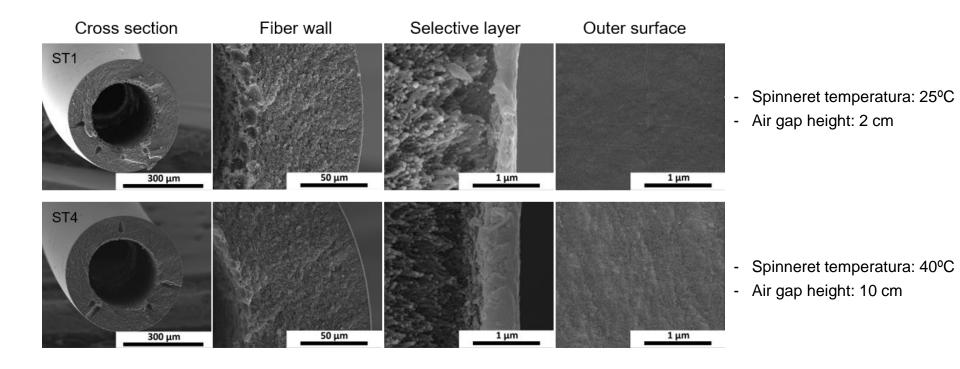


Spinning sesión D05

Spinning parameters influence:

- Spinneret temperature (25-40°C)
- Air gap height (2-10 cm)

Separation performace for single gas permeation at 35°C and 7 bar transmembrane pressure



Barsema et al. (at 25°C)

2.2 GPU CO₂

46.8 CO₂/N₂

500 nm (selective layer thickness)

PDMS coated

TECNALIA (at 35°C)

23 GPU CO₂

40.4 CO₂/N₂

56 nm (selective layer thickness)

With out PDMS coating

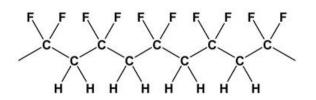
Example 2: "Bio-Based HF membranes"

Bi® Co Mem RESEARCH LINES

Co-polymer	Polyamide block	Polyether block	Main expected result
A Reference bio-PEBAs	Bio-based polyamide I I derived from castor oil (PA_{ref}^{bio})	Fossil based polyether block (PE_{ref}^{fossil})	Composite HF Membrane
B New bio-PEBAs Pathway I aromatic/cycloaliphatic polyamide-b-polyether	Bio-based polyamides derived from new building blocks $(PA_{new}^{\ \ bio})$	Fossil based polyether block $(PE_{ref}^{\ fossil})$	Better processability: (Monolithic HF membrane) and Higher gas separation performance
C New bio-PEBAs Pathway 2 lignin-g-(polyether-b- polyamide 11)	Bio-based polyamide I I derived from castor oil $(PA_{ref}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Bio-based polyether block derived from ligning-polyether (PE_{new}^{bio})	Better processability: (Monolithic HF membrane) and Development of PEBA type co-polymer with bio-based components in both blocks

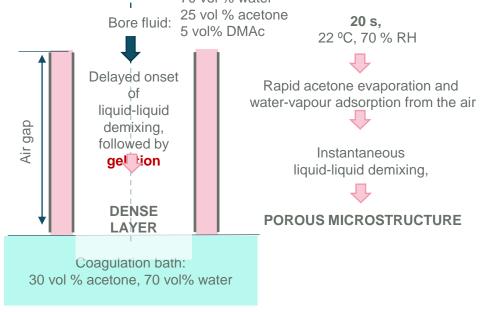
Mem Prototype B – Polymer Properties

Co-Polymer	<i>Τ_g</i> [°C]	T _m [°C] PEO/PA	CO ₂ permeability (Barrer)	CO ₂ /N ₂ Selectivity	CO ₂ /CH ₄ Selectivity
1	-45	n.d. / <mark>30</mark>	20,87	22,5	n.d.
2	-45	n.d. / <mark>37</mark>	150	12,6	n.d.
3	<-40	31 / 102	139,4	24,3	8,0
4	<-40	40 / 98	47,5	23,76	8,4
5	<-40	16 / 80	237,0	30,1	9,9
6	n.d.	53 / n.d.	40,1	25,5	8,8



Prototype B – Polymer spinning

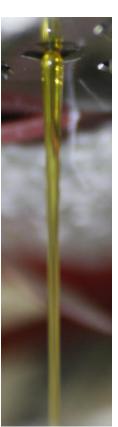
Literature background: Procedure for casting integral asymmetric PVDF pervaporation hollow fiber membranes with a dense layer on the inside bore of the fibers


70 vol % water

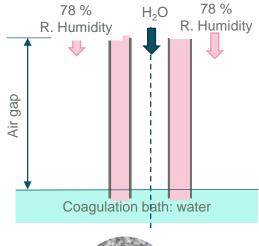
Хс	Tm (°C)	Tc (°C)
50,7	168,3	142,1

Polymer dope composition:

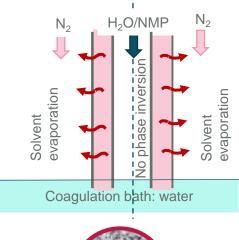
25 wt% PVDF 30 wt% DMAc 45 wt% Acetone



K. Jian, P.N. Pintauro, Asymmetric PVDF hollow-fiber membranes for organic/water pervaporation separations, Journal of Membrane Science, Volume 135, Issue 1, 1997, Pages 41-53

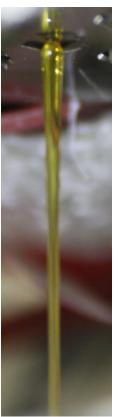


tecnal:a Prototype B – Polymer spinning

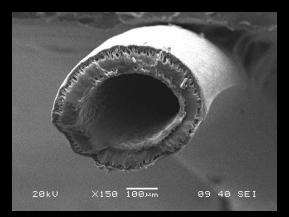


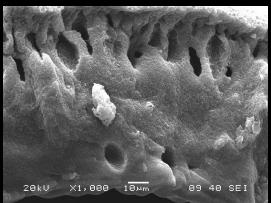
Forming the selective layer at the inside part of the fiber:

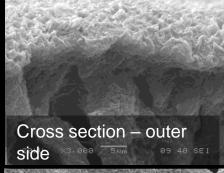
Forming the selective layer at the outer part of the fiber:

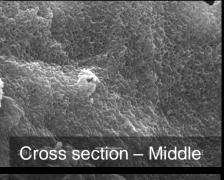


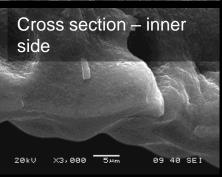
tecnal:a Prototype B – Polymer spinning

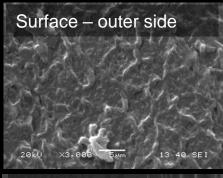



Polymer dope composition:


MS-2021-035 20 and 23 wt% LiCl 3.67 wt% NMP 73.33 wt%


Gel at RT liquid at 40 °C


Pump temperatur e (°C)	Spinneret temperature (°C)	Bore liquid compositio n H ₂ O/NMP wt%	Air gap (cm)	Air gap environmen t	Hollow fiber?
50	50	100/0	26	78% RH	*
50	50	30/70	5 - 20	N_2	
50	21	50/50	5, 11	N_2	V



Bi© Co Mem

Eskerrik asko zuen arretagatik!

.

00

ò

Thank you for your attention!

