Bio-based copolymers for membrane end products for gas separations

Bio-based Industries Consortium

This project has received funding from the Bio Based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme, under grant agreement No 887075.

The JU receives support from the European Union's Horizon 2020 research and innovation program and the Bio Based Industries Consortium

PEBA polymer synthesis pathways to membrane processing

Assoc. Prof. dr. Katrien Bernaerts (UM) Dr. Marcin Ślęczkowski and Dr. Amol Ichake (UM) Dr. Oana David (Tecnalia)

WEBINAR: Pathways to demonstrate the BIOCOMEM technology for future bio-based membranes deployment in industry

November 24th - 10:00 - 12:30

The present publication reflects only the author's views. The Commission is not responsible for any use that may be made of the information contained therein.

Introduction

- Permeability is the rate at which gaseous molecules permeate through membrane
- Selectivity is the ability of membrane to separate the gas molecule from their mixture

Advantages

• Especially for CO₂ capture

quadrupole-quadrupole interaction

 PEG-based polymers show a considerable CO₂ solubility, and the CO₂ selectivity mainly stems from the solubility selectivity.

(+)

Θ

Disadvantages

- Permeability Selectivity Trade-off
- Swelling and Plasticization
- Membrane Aging
- Limited Resistance to Fouling
- Mechanical Strength

Bio Co Mem HJ ~ LOH

Various approaches to overcome these limitations

• Block copolymerization with other hard segments

soft PEG block

hard block

• Blending with low molecular weight PEG and PEG-derivatives

• Crosslinking to form PEG polymer network.

- Polyamide (PA)
- Semi-crystalline segments
- Hard PA segments provide mechanical stability

- Polyether (PE)
- Soft PE blocks,
- Owing to dipole interactions and high chain mobility, gas permeable

Bio Co Mem Process steps from monomer to membrane

Step 1: synthesis of COOH functionalized polyamide O

(PA-b-polyether)_n

(Disclosure or reproduction without prior permission of BIOCOMEM partners is prohibited).

Maastricht University

tecnalia) Inspiring Business

BIOCOMEM results

PEBA reference with solubility issues

PEG: $T_m = 13 \text{ °C}; \Delta H_m = 40 \text{ J/g}$ PA: $T_m = 149 \text{ °C}; \Delta H_m = 29 \text{ J/g}$

Maastricht University

Bi Co Mem processability/solubility

PEBA reference with solubility issues Goals:

- PEG: $T_m = 13 \text{ °C}$; $\Delta H_m = 40 \text{ J/g}$ PA: $T_m = 149 \text{ °C}$; $\Delta H_m = 29 \text{ J/g}$
- better solubility then prototype A
- less crystalline PA, compensate for mechanics via aromatic
- biobased PA

Maastricht University

Step I: polyamide synthesis

Maastricht University

Bi🞯 **Prototype B synthesis** Co Mem

PA (DA.DE)	M _{n,PA} [g/mol]	M _{n,PEG} [g/mol]	M _{n,PEBA} [g/mol]	Ð	wt% PA/PEG	Т _g [°С]	T _{m,PEG} [°C]	T _{m,PA} [°C]	ΔH _{m,PEG} [J/g]	ΔH _{m,PA} [J/g]
PA10.F	900	1500	22 000	1.60	40/60	-45	30	-	143	
PA10.F	1500	1500	7 000	1.35	48/52	-45	37	-	140	-
PA10.F/6 x=0.6, y=0.4	1500	1500	8 500	1.51	41/59	-60	48	-	148	-

Polymer is too low M_n and shows poor mechanical properties at temperatures above melting of PEG block.

Maastricht University

PA (DA.DE)	M _{n,PA} [g/mol]	M _{n,PEG} [g/mol]	M _{n,PEBA} [g/mol]	Т _{т,РЕĞ} [°С]	T _{m,PA} [°C]	CO ₂ permeability (Barrer)	CO ₂ /N ₂ selectivity	CO ₂ /CH ₄ selectivity	NIPS membrane formation?
10.F	900	1500	22 000	30	-	20,87	22,5	n.d	no
10.F	1500	1500	7 000	37	-	150	12,6	n.d	no
10.F/6 x=0.6, y=0.4	1500	1500	8 500	48	-	Could not	form a den	se film	no

Issues membrane evaluation:

tecnalia Inspiring Business

Bi🞯

Co

- Polymer properties obstacle protocols with temperatures above 50 °C are used to prepare membranes.
- high degree of crystallinity of PEG block is detrimental for CO_2 absorption properties ٠

Bi⁽ⁱ⁾ Co Mem Modified Prototype B – synthesis route A

Step 1: polyamide synthesis

Bi Co Mem Modified Prototype B – synthesis route A $HO \left(\int_{U} \int_{X} \int_{H} \int_{H} \int_{H} \int_{H} \int_{H} \int_{H} \int_{H} \int_{X} \int_{O} \int_{M} \int_{H} \int$

PA (DA.DC)	M _{n,PA} [g/mol]	M _{n,PEG} [g/mol]	M _{n,PEBA} [g/mol]	Ð	wt% PA/PEG	T _g [°C]	T _{m,PEG} [C]	T _{m,PA} [°C]	ΔH _{m,PEG} [J/g _P	ΔH _{m,PA} [J/g]
36.6	3200	1500	33 000	1.49	67/33	<-40	31	102	89	13
36.6	2100	1500	27 500	1.61	59/41	<-40	34	100	93	11
36.6	1200	1500	28 000	1.56	48/52	<-40	40	98	86	5
36.10	2600	1500	24 000	1.45	62/38	<-40	41	92	92	14

DC6: x=2

DC10: x=4

 $M_{n,PEBA}$ lower then expected due to sublimation

Maastricht University

Bie Co Mem Ho $(f) = f$										
					5	DC10: x=4				
PA DA.DC)	wt% PA/PEG	M _{n,PEBA} [g/mol]	T _{m,PEG} [°C]	T _{m,PA} [°C]	CO ₂ permeability (Barrer)	CO ₂ /N ₂ selectivity	CO ₂ /CH ₄ selectivity	NIPS membrane formation		
36.6	67/33	33 000	31	102	139,4	24,3	8,0	no		
36.6	59/41	27 500	34	100	234,4	29,0		no		
36.6	48/52	28 000	40	98	45,1	23,9	8,4	no		
36.10	62/38	24 000	41	92	70,9	22,6	7,6	no		

- Screening experiments at 35 °C. If $T_{m,PEG} > 35$ °C, bad gas separation performance because of lack of mobility in the PEG phase
- NIPS membrane formation not succesfull

tecnalia Inspiring Business

Bio Co Mem Mem

Step 1: polyamide synthesis

Step 2: PEBA synthesis

Bio Co Mem / Modified Prototype B – synthesis route B

PA (DA.DC)	M _{n,PA} [g/mol]	M _{n,PEG} [g/mol]	M _{n,PEBA} (g/mol)	Ð	wt% PA/PEG	Т _g [°С]	T _{m,PEG} [C]	T _{m,PA} [°C]	ΔH _{m,PEG} [J/g]	ΔH _{m,PA} [J/g]
10.36	2000	1500	48 000	2.23	60/40	n/d	16	80	57	20
10.36	2300	1500	43 000	1.77	64/36	-60	14	79	64	19
10.36	2600	3350	34 300	2.07	36/64	n/d	54	78	113	12

Maastricht University

m

PA (DA.DC)	wt% PA/PEG	М _{п,РЕВА} [g/mol]	Т _{т,РЕ} _G [°С]	T _{m,PA} [°C]	CO ₂ permeability (Barrer)	CO ₂ /N ₂ selectivity	CO ₂ /CH ₄ selectivity	NIPS membrane formation?
10.36	60/40	48 000	16	80	228,8 ±8,2	27,5 ±1,64	9,2 ±0,7	yes
10.36	64/36	43 000	14	79	219,0 ±0,2	26,9 ±0,14	8,7 ±0,02	yes
10.36	36/64	34 300	54	78	40,1	27,3	8,8	no

Good gas separation properties and NIPS membrane formation succesfull with short PEG (low crystallinity)

(Disclosure or reproduction without prior permission of BIOCOMEM partners is prohibited).

Х

PA (DA.DC)	M _{n,PA} [g/mol]	M _{n,PEG} [g/mol]	M _{n,PEBA} [g/mol]	Ð	wt% PA/PEG	T _{m,PEG} [C]	T _{m,PA} [°C]	ΔH _{m,PEG} [J/g]	ΔH _{m,PA} [J/g]
10.36*	2300	1500	43 000	1.77	64/36	14	79	64	19
10.36	2300	1500	52 900	2.19	55/45	13	77	28	14
11 endcapped with DC36	1000	1500	82 900	2.57	42/58	24	122	49	5
11/10.36	2100	1500	44 700	2.04	56/44	20	94	30	13
11/10.36	6000	1500	50 200	2.38	78/22	15	105	20	20
	AL A	•							

* Only upscaled to 100 g

AKKEI

Maastricht University or reproduction without prior permission of BIOCOMEM partners is prohibited).

Bio Co Mem Modified prototype B

Sample	PA (DA.DC)	wt% PA/PEG	ͳ _{ՠ,ΡΕG} [°C]	Т _{т,РА} [°С]	CO ₂ permea bility (Barrer)	CO ₂ /N ₂ selectivity	CO ₂ /CH ₄ selectivity	CO ₂ /H ₂ selectivity
Polyactive	PEG1500	D ₇₇ PBT ₂₃	27	110	115	45.6	n.d.	n.d.
Prot A	11	40/60	25	160	311	45	14.07	9.35
Prot B1	10.36	64/36	14	79	219	26.9	8.7	n.d.
Prot B2	10.36	55/45	13	77	354 🗸	28.83	8.99	5.48
Prot B3	11 endcapped with DC36	42/58	24	122	360	36.13	10.9	7.46
Prot B4	11/10.36	56/44	20	94	343	30.13	9.25	5.37
Prot B5	11/10.36	78/22	15	105	106	21.02	7.16	2.81

Test conditions: 35 °C and 3 bar Δp for all samples, except Polyactive 30 °C, 300 mbar

Conclusion:

- Higher PEG content better for gas separation properties

 Succesfull synthesis of a new class of PEBA for gas separation membranes

- Dimer fatty acid in the polyamide block increases solubility/processability into membranes
- Gas separation properties of screening results very promising