ŏ

••

Hollow fiber membrane fabrication

Dr. Miren Etxeberria Benavides and Dr. Oana David

tecnal:a

MEMBER OF BASQUE RESEARCH

& TECHNOLOGY ALLIANCE

Membrane Technology and Process Intensification

& TECHNOLOGY ALLIANCE

MEMBRANE TECHNOLOGY

	•	•	•	•	•			
•	•	•	•	•	•	•	•	•
•	•	÷			•	•	•	•

			•	•		•	•	•	•
		••	•	•	•	•	•	•	•
•	•	•				•	•	•	•
•	•	•					•	•	•
•	•	•				•	•	•	•
						•	•	•	

MEMBRANE SEPARATION

- No require a gas-liquid phase change
- \circ Smaller separation units \rightarrow small footprint
- Lack of mechanical complexity

. .

Operate under continuous, steady-state conditions

MEMEBRANE STRUCTURE AND GEOMETRY

Commercial membranes

5

MEMEBRANE STRUCTURE AND GEOMETRY

				•	•		•	•	•	•
		••		•	•	•	•	•	•	•
•	•	-					•	•	•	•
•	•	•						•	•	•
•	•	•					•	•	•	•
							•	•	•	

Monolithic and asymmetric hollow fiber membrane

 $J_i = \frac{P_i \cdot \Delta p_i}{l}$

Highly porous support

HOLLOW FIBER MEMBRANES -Geometry

HOLLOW FIBER MEMBRANES -Geometry

Membrane packing density inside the permeation module = 50 %

Advantages of HF

- High packing density (over 10000 $\,m^2/m^3),\,10$ times higher than plate and frame modules

· · · · · 10

HOLLOW FIBER PREPARATION METHODS -spinning

Single step process: simultaneous formation of the

Process parameters:

Dope and bore composition and flow rate Spinneret and coagulation bath temperature Air gap height and atmosphere Take up-rate Room temperature and humidity

HOLLOW FIBER PREPARATION METHODS -spinning

tecnal:a

Forming the selective layer at the inside part of the fiber:

12

MEMBRANE DEVELOPMENT STRATEGY

			•	•		•	•	•	•
		••	•	•	•	•	•	•	•
•	•	•				•	•	•	•
•	•	•					•	•	•
•	•	•				•	•	•	•
						•	•	•	

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

.

.

...

••			•	•
BEN	CHN	IAR	K	•

Polymeric materials used

· · · · · · · · ·
••••

			÷.,	÷.,		÷.,	÷.,	÷.,	
		••	•	•	•	•	•	•	•
•	•	•				•	•	•	•
•	•	•					•	•	•
							•	•	•

Polyaramide
Polysulfone
Poly(phenilene oxide)
Cellulose acetate
Polyimides:
P84
PBI
6FDA-DAM
PI-Extem

•

Bio-based copolymers for membrane end products for gas separations

Bio-Based HF membranes

MEMBER OF BASQUE RESEARC & TECHNOLOGY ALLIANCE

Material development and/or selection

PEBA type Polymers

Arkema

Didden, Jeroen; Thür, Raymond; Volodin, Alexander; Vankelecom, Ivo F. J. (2018), Journal of Applied Polymer Science, 46433

Yave, W., A. Car, and K.-V. Peinemann, J. Membr. Sci. 2010, 350: p. 124-129 (2010)

& TECHNOLOGY ALLIANCE

Material development and/or selection

Polymor	P (Barrer)	/ity	Pof		
Polymen	CO2	CO_2/N_2	CO ₂ /CH ₄	CO_2/H_2	Nei.
Pebax 1657 PEO with PA6	98	53,2	16,1	9,5	1
PEBAX 2533 PTMO with PA12	234 -351	25 - 41			2
PEBAX 1074 PEO with PA12	134,74	59,61	16,16	10,28	2
Bio PEBAX PEO with PA11	311,41	45	14,07	9,35	Bioco mem

[1] S.R. Reijerkerk et al. / Journal of Membrane Science 352 (2010) 126–135

[2] H. Lin, B.D. Freeman, Gas solubility, diffusivity and permeability in poly(ethylene oxide), J. Membr. Sci. 239 (1) (2004) 105–117

Co-polymer	Polyamide block	Polyether block	Main expected result
A Reference bio-PEBAs	Bio-based polyamide I I derived from castor oil (PA _{ref} ^{bio})	Fossil based polyether block (PE _{ref} ^{fossil})	Composite HF Membrane
B New bio-PEBAs Pathway I aromatic/cycloaliphatic polyamide-b-polyether	Bio-based polyamides derived from new building blocks (<i>PA_{new}^{bio}</i>)	Fossil based polyether block (PE _{ref} ^{fossil})	Better processability: (Monolithic HF membrane) <i>and</i> Higher gas separation performance
C New bio-PEBAs Pathway 2 lignin-g-(polyether-b- polyamide 11)	Bio-based polyamide I I derived from castor oil (PA _{ref} ^{bio})	Bio-based polyether block derived from lignin- g-polyether (PE _{new} ^{bio})	Better processability: (Monolithic HF membrane) and Development of PEBA type co-polymer with bio-based components in both blocks

	Concentration wt%									
	SOL 01	SOL 02	SOL 03	SOL 04	SOL 05	SOL 06	SOL 07	SOL COMPL.		
35 B6	20	20	20	20	20	20	20	20		
NMP	80	78	76	70	74	68	66	64		
LiCI		2			2	2		2		
PVP K30			4		4		4	4		
THF				10		10	10	10		

Conclusions:

1. THF is better solvent than NMP (SOL 01 vs SOL 04).

2. Addition of PVP does not form a homogeneous blend (SOL 03, SOL 05, SOL 07 and SOL COMPL), therefore is not a viable approach.

3. At Polymer/LiCl=10, adding THF induces lower gel formation speed at RT (~2 h for SOL 02 vs ~8 h for SOL 06).

4. Gel formation could not be prevented at room temperature. Therefore, the solution should be kept at minimum 40 °C within the spinning vessels and lines.

5. A good dope composition could be SOL 06 and SOL 04.

6. Spinning with SOL 02 instead of SOL 06 will determine a higher contribution of crystallization phenomena to phase inversion phenomena during the coagulation of the fibers.

Polymer spinning

Polymer dope composition:							
035 B5	20 and 23 wt%						
LiCl	3.67 wt%						
NMP	73.33 wt%						
Cel at RT liqu	id at 10 °C						

	Pump temperature (°C)	Spinneret temperature (°C)	Bore liquid composition H ₂ O/NMP wt%	Air gap (cm)	Air gap environment	Hollow fiber?
Ö	50	50	100/0	26	78% RH	
C	50	50	30/70	5 - 20	N ₂	×
C	50	21	50/50	5, 11	N ₂	

Polymer scale - up

	PA	<i>Т_g</i> [°С]	<i>Τ_m</i> [°C] ΡΕΟ/ΡΑ	CO ₂ permeability	CO ₂ /N ₂ Selectivity	CO ₂ /CH ₄ Selectivity	CO ₂ /H ₂ Selectivity
			rlojra	(Barrer)			
	Prototype A	<-50	25/160	311,41	45	14,07	9,35
	MS-2021-035	<-40	16 / 80	228,8	27,5	9,2	
35 °c and 3 bar(a) ∆p -	Prototype B <i>(scaled-up)</i> 2021- 1449TLT500	n.d	13/77	353,99	28,83	8,99	5,48
	Prototype B <i>(scaled-up)</i> 2021- 1449TLT502	n.d	20/94	342,77	30,13	9,25	5,37
30 °C, 300 mbar	Polyactive (1500PEO77PBT23)	-49	27/110	115	45,6		n.d.

Objective for HF membrane: PCO2= 1000 GPU $\alpha_{CO2/N2}$ = 30

Gas permeation Properties: 2021-1449TLT500

& TECHNOLOGY ALLIANCE

Solubility study

Biô Co Mem

- All solutions are liquid at 40 °C
- All solutions form a gel at room temperature.
- At RT, gel formation is 3 h for TLT 502 and takes longer time for TLT 502
- Gel formation is faster at lower concentrations (see below)

Polymer spinning

$28 \ \text{wt\%}$ TLT $502 \ ; \ 14 \ \text{wt\%}$ THF; 2,8 wt% LiCl in NMP

Qdope/Qbore=180/90

- bore liquid composition H2O/NMP=90/10 wt%,
- spinning temperature: 30 °C,
- air gap height = 50, humidity in the air gap,
- take up rate = 8 m/min.

26 wt% TLT 502; 1.3 wt% LiCl in NMP

- bore liquid composition H2O/NMP=95/5 wt%,
- take up rate = 8 m/min.

29

Gas permeation

& TECHNOLOGY ALLIANCE

Dual layer Hollow fiber spinning

31

ΡΑ	τ [°C]	<i>T_m</i> [°C]	CO ₂	CO ₂ /N ₂	CO ₂ /CH ₄ Selectivity	CO ₂ /H ₂
structure	ν _g [C]	PEO/PA	y (Barrer)	Selectivity		Selectivity
Prototype A	<-50	25/160	311,41	45	14,07	9,35
MS-2021-035	<-40	16/80	228,8	27,5	9,2	
Prototype B <i>(scaled-up)</i> 2021- 1449TLT500	n.d	13/77	353,99	28,83	8,99	5,48
Prototype B (<i>scaled-up</i>) 2021- 1449TLT502	n.d	20/94	342,77	30,13	9,25	5,37
Prototype B <i>(scaled-up)</i> 2021- 1449TLT549			395,88	36,13	10,9	7,46
Prototype B <i>(scaled-up)</i> 2021- 1449TLT550			106	21,02	7,16	2,81
Polyactive (1500PEO77PBT23)	-49	27/110	115	45,6		n.d.

Objective for dual layer fiber approach: PCO2= 400 GPU $\alpha_{CO2/N2} = 30$

Dual layer Hollow fiber spinning

Bi🕸
Co
Mem

TLT 550	20,00%	TLT 549	22,0%
NMP	72,90%	NMP	76,4%
LiCl	1,10%	LiCl	1,00%
PEG 1500	6,00%	H2O	0,5%

Spinning parameters:

Outer dope flow rate = 160 mL/min Inner dope flow rate = 20 mL/min Bore liquid = 80/20 H2O/NMP Spinneret Temperature = **50 °C**, **40 °C for exp 2** Air gap = chimney in place when air gap of 10, No N2 flow Freeze drying

Quench Bath Temp		Air gap height	Take up rate	
	(ºC)	(cm)	(m/min)	
ST1	22	10	5	
ST3	21,5	1,5	5	
ST4	21,5	1,5	10	
ST5	39	10	5	
ST6	38,8	1,5	8	

Dual layer Hollow fiber spinning

· · · · · · · ••

.

08 40 SEI

10µm

X1,000

10

ST1

ST2

ST3

5µm

08 40 SEI

10kV

X5,000

Dual layer Hollow fiber spinning

Mechanical properties: elongation

			0	
	Ultimate strength (Mpa)	±	(%)	±
ST1	7,38	0,173	874%	27%
ST3	7,19	0,226	791%	10%
ST4	11,44	0,182	584%	9%
ST5	4,92	0,114	664%	5%
ST6	9,46	0,444	627%	12%

Elongation at brake

Membranes (Materials)	Young's Modulus (MPa)	Elongation at Break (%)	Ultimate Strength (MPa)	Porosity (%)
U305 (Ultem [@] 1000 (PEI))	132	44	58.5	55.9
M264 (Matrimid [@] 5218 (PI))	121	29	54.8	58.4
PES28 (Ultrason E6020P (PES))	72	85	5.2	46.1

36

tecnal:a

Conclusions

More optimization:

- Increase surface porosity

. .

- Eliminate the macrovoids
- Densify the inner layer Scale up: successful

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Eskerrik asko zuen arretagatik!

.

0

ŏ

Thank you for your attention!

....

8

••

8

tecnal:a

Literature background: Procedure for casting integral asymmetric PVDF pervaporation hollow fiber

K. Jian, P.N. Pintauro, Asymmetric PVDF hollow-fiber membranes for organic/water pervaporation separations, Journal of Membrane Science, Volume 135, Issue 1, 1997, Pages 41-53