Bio-based copolymers for membrane end products for gas separations

Membrane-based Process Design and Economics

Speaker: Rouzbeh Ramezani Eindhoven University of Technology Department of Chemical Engineering and Chemistry Sustainable Process Engineering <u>r.ramezani@tue.nl</u>

Webinar: Membrane based Process Design and Economics – Bio-based Membranes for CO₂ separation - 24th November 2023

Bi Co Mem

Membrane-based Gas Separation

- The potential application of the membrane process in a great measure depends on the capability of membrane materials to provide high separation performance.
- Membranes suffer from a trade-off between selectivity and permeability with an upper bound.
- An optimal flowsheet of membrane-based gas separation can remarkably decrease capture cost and energy consumption.
- The development of efficient and cost-effective multi-stage membrane processes as well as improvements in membrane selectivity and permeance is of major importance.

Steps of design of a membrane system

Membrane-based process design (single stage)

- □ The selection of the best configuration is highly related to feed quality, separation objectives and market values.
- □ A single-stage membrane process cannot meet high recovery and gas purity at the same time, regardless of the membrane type used.
- □ CO₂/N₂ selectivity must be over 200 to achieve the target separations with CO₂ recovery and purity of >90% and >95%, respectively, in a single-stage membrane configuration.
- □ Since the single-stage membrane process cannot reach the separation goal, a multi-stage membrane system needs to be implemented.

Two-stage cascade for purer retentate or permeate

The raw gas is compressed and fed to the first membrane stage The first stage performs a bulk separation of for example CO_2 and CH_4 The retentate of the first stage is fed to a second stage in which the final product purity is obtained.

Permeate of the second stage is recycled and mixed with the raw gas stream

The permeate stream of the first membrane, after passing

through a compressor, enters the second stage

The permeate stream of the second membrane is considered

as the final product

Multi-stage membrane module

Three-stage membrane module

- > In most of the literature's examined works, the optimization results were typically derived from heuristic design experience.
- Although using this approach does yield an optimum separation system but is in no way viable to assure whether the capture cost is a global optimum.

*M. Samei, A. Raisi, Chemical Engineering and Processing - Process Intensification, 170, 2022, 108676.

By applying a structural optimization approach, the most profitable process configuration including stage numbers can be determined.

By applying a structural optimization approach, the most profitable process configuration including stage numbers can be determined.

By applying a structural optimization approach, the most profitable process configuration including stage numbers can be determined.

By applying a structural optimization approach, the most profitable process configuration including stage numbers can be determined.

By applying a structural optimization approach, the most profitable process configuration including stage numbers can be determined.

Flow arrangements in membrane modules

□ The performance of a membrane is influenced by the way in which the permeate and retentate flow in the membrane.

□ Flow arrangements of perfect mixing, co-current, counter-current, and cross flow are possible in the design of a membrane module.

Process Simulation Tools

Process simulators have been proven to be successful in modeling, simulate, and optimize various industrial processes.

Aspen Plus Aspen Hysys	Can be used for batch and continuous processes for design, troubleshooting in regular operations, monitoring the plant performance through online, and real-time optimization.
gPROMS	An advanced equation oriented process modeling software, which can be used to model, analyze, and optimize in an easy-to-use process flow-sheeting environment.
PRO/II	A steady-state simulator which has an in-built membrane unit operation to simulate crossflow symmetric membranes for gas separations.
ProMax	A multifaceted process simulation software which it is designed to optimize gas processing, refining, and chemical facilities.
SuperPro Designer	A flowsheet driven simulator for batch, continuous as well as combination processes, that perform material and energy balances, equipment sizing, and costing.
Aspen Custom Modeler	Provides the capability to create unique process and equipment simulation models by describing the equations which can be exported into Aspen Plus/Hysys.

Implementation of Membrane model in Aspen Custom Modeler

- The developed mass transfer model for the gas separation membrane process is coded.
- The model for membrane gas separation can be implemented and solved in ACM, which can be added to Aspen Plus.
- To implement the membrane model in ACM, all chemicals are defined from the component list in the Aspen Properties User Interface program.
- Fixed variables or inputs (feed temperature, pressure, composition and membrane area) are defined, and the process parameters (for example, permeance) and variables are declared.
- The model has one port for feed stream and two ports as permeate and retentate streams.

Economic model

To find the best configuration of the multi-stage gas membrane process, the cost analysis was conducted for:
Post-combustion
Natural gas sweetening
Biogas upgrading

OPEX VS CAPEX

□ The aim is to minimize the cost of separation while satisfying the separation targets.

- The economic analysis of the superstructure membrane process was performed by calculating the capital cost, annual operating and maintenance, and energy cost.
- **Capital cost** is associated with membrane area and membrane module skids as well as the contribution of major components such as compression, expander and vacuum pumps.
- Operational cost is a sum of electricity cost, and operation and maintenance costs. Operation and maintenance of the vacuum pumps, expander and compressors is estimated at 3.6% of their capital cost and 1% for the membrane and the membrane frame.

Economic model

Description		
Membrane module cost	C _m	\$/m ²
Compressor unit cost	C_c	\$/kW
Expander unit cost	C _{ex}	\$/kW
Vacuum pump unit cost	C_{v}	\$/kW
Efficiency of pressure units	η	-
Installation factor	f _{in}	-
Electricity cost	C _e	\$/kWh⁻¹
Operation time per year	t _{op}	h/yr
Depreciation factor (25 years)	DF	-
Membrane depreciation factor (5 years)	DF _m	-
Membrane frame cost	$I_{m,fram} = 0.238 \times 10^6 \times \left(\frac{A_{t,mem}}{2000}\right)^{0.7} \left(\frac{P_t}{55}\right)^{0.88}$	\$
Compressor cost	$CC = C_c \times W_c \times f_{in}$	\$
Expander cost	$CE = C_{ex} \times W_{ex} \times f_{in}$	\$
Vacuum pump cost	$CV = C_v \times W_{vp} \times f_{in}$	\$
Total capital cost	$TCC = DF_m(C_m \times A_{t,m}) + DF(I_{m,fram} + CC + CE + CV)$	\$/y
Operating and maintenance cost	$OMC = 0.01 (C_m A_{t,m} + I_{m,fram}) + 0.036 (CC + CE + CV)$	\$/y
Energy cost	$EC = C_e \times t_{op} \times \sum W$	\$/y
Total operational cost	VOM = OMC + EC	\$/y
Gas processing cost	$GPC = \frac{TCC + VOM}{annual separated CO_2}$	\$/tonne CO ₂

Optimization strategy

- Input variables: Feed conditions, Membrane selectivity and gas permeance, target pressure, product specification
- > Targets: CO_2 or CH_4 recovery and purity, minimum GPC
- Decision variables: Membrane area of each stage, retentate pressure, permeate pressure of each stage, split fractions
- ✓ Output variables: Compressor power, membrane area, CAPEX, OPEX, GPC, number of stages

Post-combustion CO_2 capture should meet conditions of low energy consumption, small footprint, high CO_2 purity (\geq 90%) and recovery (\geq 90%), no adverse environmental impact, and minimal gas processing costs.

The flue gas produced from coal combustion has low CO_2 composition and a high-volume flow rate. For example, a 500 MW coal-fired power plant emits approximately 426 tons of CO_2 per hour

TFCM	Permeance (GPU)		Selectivity
	N ₂	CO ₂	CO_2/N_2
Prototype A	65	2027	31.0
Prototype A1	46	1598	34.4

Feed characteristic	
Feed flow rate	80,000 kmol/hr
Feed temperature	308.15 K
Feed pressure	1 bar
Feed composition	14 % CO ₂ 86 % N ₂
CO ₂ emission	505 tons/hr
Output targets	
CO ₂ recovery	90 % and 95 %
CO ₂ purity	95 % and 98 %
Product pressure	76 bar

		Prototype A			Prototype A1	
CO ₂ permeance	2027	2027	2027	1598	1598	1598
N ₂ permeance	65	65	65	46	46	46
CO_2/N_2 selectivity	31	31	31	34.4	34.4	34.4
CO ₂ recovery	90%	95%	95%	90%	95%	95%
CO ₂ purity	95%	95%	98%	95%	95%	98%
Stages	3	3	3	3	3	3
CAPEX, €/yr	37×10 ⁶	49×10 ⁶	68×10 ⁶	36×10 ⁶	45×10 ⁶	59×10 ⁶
OPEX, €/yr	140×10 ⁶	177×10 ⁶	249×10 ⁶	128×10 ⁶	157×10 ⁶	202×10 ⁶
Power, <i>kW</i>	328,841	415,899	584,585	299,364	367,919	474,508
Membrane area, <i>m</i> ²	550,268	841,188	1,224,300	642,430	922,526	1,245,790
SEC, GJ/tonCO ₂	2.66	3.19	4.49	2.42	2.82	3.64
GPC, €/tonCO ₂	50.2	60.5	84	46.3	54.2	69.8

EINDHOVEN UNIVERSITY OF TECHNOLOGY

R=CO₂ recovery X=CO₂ purity

2. Natural gas separation

Every year, the world uses close to 3.9 trillion cubic meters of natural gas.

- CO₂ separation from natural gas is critical as the presence of CO₂ adversely affects the produced gas quality, and can form acids in the presence of water that corrodes the pipelines and equipment.
- \Box CO₂ content in natural gas needs to be decreased to below 3%.

				Feed gas characteristic	Feed flow rate	1700 kmol/hr
TFCM	Permeance (GPU)		Selectivity		Feed temperature	298.15 K
	CH ₄	CO ₂	CO ₂ /CH ₄		Feed pressure	20 bar
Prototype A	204	2027	9.9		Feed composition	10 % CO ₂ 90 % CH ₄
Prototype A1	142	1598	11.2	Output targets	CH ₄ recovery	99 %
	•		•		CH ₄ purity	98 %
					Product pressure	20 bar

2. Natural gas separation

Natural gas

2. Natural gas separation

	Prototype A	Prototype A1
CO ₂ permeance	2027	1598
CH ₄ permeance	204	142
CO ₂ /CH ₄ selectivity	9.9	11.2
CH ₄ recovery	99 %	99 %
CH ₄ purity	98 %	98 %
Stages	3	3
CAPEX, €/yr	394000	352031
OPEX, €/yr	2.2×10 ⁶	1.9×10 ⁶
Power	5338 kW	4622 kW
Membrane area	1348 m ²	1574 m ²
GPC	15.0 €/ton NG	12.7 €/ton NG

EINDHOVEN UNIVERSITY OF TECHNOLOGY

3. Biogas Upgrading

- Biogas is a potential alternative to the world's unquenchable demand for energy and concurrently reduces waste and greenhouse gas emissions.
- \Box CO₂ is the non-combustible portion of biogas.
- □ CO_2 has to be removed from CH_4 to enhance the heating value of the product gas.
- □ CH₄ mole fraction in the raw gas of 60% has to be increased to more than 90% in order to meet the natural gas grid requirements.
- □ CH₄ purity and recovery are the most important technical parameters in determining an optimal module arrangement to ensure a low CH₄ loss.

Feed gas characteristic	Feed flow rate Feed temperature Feed pressure Feed composition	100 kmol/hr 298.15 K 1 bar 40 % CO ₂ 60 % CH ₄
Output targets	CH ₄ recovery CH ₄ purity Product pressure	95 % 97 % 16 bar

TFCM	Permeance (GPU)		Selectivity
	CH ₄	CO ₂	CO ₂ /CH ₄
Prototype A	204	2027	9.9
Prototype A1	142	1598	11.2

3. Biogas Upgrading

3. Biogas Upgrading

Conclusion

- The proposed superstructure is beneficial for further reduction of the cost associated with membrane CO₂ capture process and can be successfully applied for various applications.
- ✤ The membrane selectivity plays a key role on final gas separation cost.
- Three-stage structure with two recycle streams and two vacuum pumps is the most profitable layout for post-combustion CO₂ capture.
- ★ The gas separation costs increased from about 46 to 70 €/ton CO₂ and specific energy consumption increased from 2.4 to 3.6 GJ/ton CO₂, when product targets increased from 90% recovery and 95% purity to 95% recovery and 98% purity.
- A two-stage process with one recycle stream is able of upgrading biogas to meet the separation targets of 95% recovery and 97% CH₄ purity.
- ★ The optimal configuration for a 99% CH₄ recovery and 98% CH₄ purity in natural gas included three membrane stages with two permeate recycles and one vacuum pump at 12.7 €/ton NG.

Bio-based copolymers for membrane end products for gas separations

This project has received funding from the Bio Based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme, under grant agreement No 887075.

The JU receives support from the European Union's Horizon 2020 research and innovation program and the Bio Based Industries Consortium.

